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In the process industry, there exist many systems which can be approximated by a Hammerstein model.
Moreover, these systems are usually subjected to input magnitude constraints. In this paper, a multi-channel
identification algorithm (MCIA) is proposed, in which the coefficient parameters are identified by least squares
estimation (LSE) together with a singular value decomposition (SVD) technique. Compared with traditional
single-channel identification algorithms, the present method can enhance the approximation accuracy
remarkably, and provide consistent estimates even in the presence of coloured output noises under relatively
weak assumptions on the persistent excitation (PE) condition of the inputs. Then, to facilitate the following
controller design, this MCIA is converted into a two stage single-channel identification algorithm (TS-SCIA),
which preserves most of the advantages of MCIA. With this TS-SCIA as the inner model, a dual-mode non-linear
model predictive control (NMPC) algorithm is developed. In detail, over a finite horizon, an optimal input profile
found by solving a open-loop optimal control problem drives the non-linear system state into the terminal
invariant set; afterwards a linear output-feedback controller steers the state to the origin asymptotically.
In contrast to the traditional algorithms, the present method has a maximal stable region, a better steady-state
performance and a lower computational complexity. Finally, simulation results on a heat exchanger are presented
to show the efficiency of both the identification and the control algorithms.
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Nomenclature

Hm�n
2 ðTÞ: Hardy space of (m� n) transfer matrices

whose elements are in the Hardy space

H2(T)
R

n�m: n�m-dimensional real space
R
þ: one-dimensional positive real space

� (k): stochastic output noise
u (k): input of the Hammerstein system
v (k): intermediate variable of the Hammerstein

system
y (k): output of the Hammerstein system

S: number of the sampling input/output data

pairs
N(�): memoryless non-linear block of the

Hammerstein system
G (z�1): dynamic linear block of the Hammerstein

system
z�1: one-step backward shifting operator
N: Laguerre series truncation length
r: non-linear basis series truncation length

gi (�)(i¼ 1 , . . . , r): non-linear basis of the

non-linear block of the

Hammerstein system
ai (i¼ 1 , . . . , r): coefficients of gi(�)

Ll (�)(l¼ 1 , . . . ,N ): Laguerre series basis
cl (l¼ 1 , . . . ,N ): Laguerre series coefficients

�ac: coefficient matrix of the

Hammerstein system
$jð j ¼ 1, . . . , rankð�̂acÞÞ: singular values of �̂ac

NC: number of identification

channels
Lhji(k)( j¼ 1 , . . . ,N1): Laguerre state vector of the

jth channel
f̂ ð�Þ: non-linear block of the

single-channel identification

model
â: coefficient parameters of the

non-linear block of the

single-channel identification

model
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ĉ: coefficient parameters of the linear block of
the single-channel identification model

vðkÞ, �vðkÞ: the nominal and actual intermediate vari-
ables of the single-channel identification
model, respectively

�u: upper bound of the input magnitude
�: upper bound of the inversion error

f̂�1zeroinð�Þ: inversion of the single-channel model’s
non-linear block using the zeroin method

K: state-feedback gain
�K: extended state-feedback gain

L (k): Laguerre state
L̂ ðkÞ: estimation of L(k)
D (k): perturbation signal vector

SL: initial ellipsoidal invariant set of L̂ðkÞ
M: prediction horizon

SI,M: extended ellipsoidal invariant set of L̂ðkÞ
x̂ ðkÞ: extended system state estimation
Sx: feasible stable ellipsoidal invariant set of

x̂ðkÞ
E(�): mathematical expectation
&ð�Þ: standard deviation

1. Introduction

In industrial processes, most dynamical systems can be
better represented by non-linear models, which are able
to describe the systems over large operation ranges,
rather than by linear ones that are only able to
approximate the systems around given operation
points (Minesh and Matthew 1999; Gómez and
Baeyens 2004). One of the most frequently studied
classes of non-linear models is the Hammerstein model
(Eskinat and Johnson 1991; Minesh and Matthew
1999), which consists of the cascade connection of
a static (memoryless) non-linear block followed by
a dynamic linear block. Under certain considerations
such as fading memory assumption (Boyd and Chua
1985), the Hammerstein approximation could be
a good representation. Thus, this model structure has
been successfully applied to chemical processes: heat
exchanger (Eskinat and Johnson 1991); distillation
(Huner and Korenberg 1986; Eskinat and Johnson
1991; Bhandari and Rollins 2004); biological processes
(Garcia et al. 1989; Hasiewicz 1999); signal processing
(Stapleton and Bass 1985; Bai and Fu 2002), and
communications (Greblicki 1996; Bai and Fu 2002).
In recent years, identification and control of
Hammerstein systems has become one of the most
needed and yet very difficult tasks in the field of the
process industry.

In model predictive control (MPC) framework
(Garcia et al. 1989; Henson 1998), the input is
calculated by on-line minimisation of a performance

index based on model predictions. It is well known that
the control quality relies on the accuracy of the model.
In recent years, extensive efforts were devoted to the
modelling of Hammerstein non-linearities (Greblicki
and Pawlak 1989; Eskinat and Johnson 1991; Bai 1998;
Greblicki 2002; Gómez and E.Baeyens 2004; Hasiewicz
and Mzyk 2004). For example, Bai (1998) studied
single input/single output (SISO) systems subject to
external white noise. Gómez and Baeyens (2004)
designed a non-iterative identification with guaranteed
consistent estimation even in the presence of coloured
output noise. Both of their works use only one channel
to identify the system; therefore, owing to the singular
value decomposition (SVD) nature of their methods,
the identification errors usually cannot be minimised.
A basic reason is that the error is determined by the
second largest singular value (for SISO system) or the
(nþ 1)st largest singular value (for MIMO system
with n inputs) of the estimated coefficients matrix. For
a SISO system, if the sampling set is not big enough or
the persistent excitation (PE) conditions are not
fulfilled, the second largest singular value cannot be
neglected, making the identification accuracy unsatis-
factory or even unacceptable.

On the other hand, the research on the control of
Hammerstein systems is still on the midway so far.
Most of the existent control algorithms have some of
the following disadvantages:

. reliance on prior knowledge;

. insufficiently large closed-loop stable regions;

. limited capacity of handling input constraints.

In detail, Haddad and Chellaboina (2001) suggested
a design that can guarantee global asymptotic closed-
loop stability for non-linear passive systems by
embedding a non-linear dynamic compensator with
a suitable input non-linearity, which requires the
memoryless non-linear block to be partially known
or measurable without considering input constraints.
Patwardhan et al. (1998) used a partial least square
(PLS) framework to decompose the modelling problem
into a series of univariate problems in the latent
subspace while preserving optimality of the con-
straints. In this way, they can extend the SISO
formulation into a constrained MIMO scenario.
In this approach, however, the computational com-
plexity is prohibitive, and the reliance on prior
knowledge cannot be eliminated. Knohl et al. (2003)
slightly alleviated this reliance by an artificial neural
network (ANN) inverse compensation, which makes
the control scheme more flexible, but its stable region is
still small. Zhu et al. (1991) and Fruzzetti et al. (1997)
developed generalised predictive control (GPC) and
MPC algorithms respectively by taking input
constraints into account. These schemes still cannot
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ensure a large stable region in general, and require
prior knowledge of the real plant such as order,
structure, partial coefficients, etc. Bolemen et al. (2001)
extended their own work (Bolemen et al. 2000), which
preserves the convex property of the optimisation
problem, but does not consider input constraints.
In order to enlarge the asymptotically stable region for
constrained non-linear systems, Chen and Allgöwer
(1998b) developed a quasi-infinite horizon non-linear
model predictive control (NMPC) algorithms based on
a dual-mode (or two-step) technique, which has
opened a new avenue in this fascinating field. In
Chen and Allgöwer’s (1998b) paper there are three
important investigations made by Lin and Saberi
(1993), Kouvartakis et al. (2000) and Ding and Xi
(2006). More precisely, Kouvartakis et al. (2000)
proposed a new approach that deployed a fixed state-
feedback law with the assistance of extra degrees of
freedom through the use of perturbations, which led to
a significant reduction in computational cost. More
generally, for linear systems with actuator rate satura-
tion, Lin and Saberi (1993) designed both state-
feedback and output-feedback control laws that
achieve semi-global asymptotic stabilisation based on
the assumption of detectability of the system. For
input saturated Hammerstein systems, Ding and Xi
(2006) designed a two-step MPC by solving non-linear
algebraic equation group and desaturation. The stable
region is enlarged and its domain of attraction is
designed applying semi-global stabilisation techniques.
Unfortunately, this work is still based on the measur-
ability of the state of the linear block.

Based on the above analysis, two important tasks
are formulated as follows:

. Task one: Develop a better identification algo-
rithm to separate the non-linear/linear blocks of
the Hammerstein system more effectively so that
some mature linear control theories can be used
to facilitate the non-linear control algorithm
design.

. Task two: Develop a more efficient control
algorithm for constrained Hammerstein systems.

Bearing these tasks in mind, we propose
a NMPC algorithm based on a two stage single-
channel identification algorithm (TS-SCIA). More
precisely:

. A multi-channel identification algorithm
(MCIA) is developed for Hammerstein systems
which eliminates requirement of prior knowl-
edge about the plant and minimises the identi-
fication errors. The MCIA is then converted to
a TS-SCIA thereby facilitating the controller
design. A sufficient condition for the

convergence and approximation capability is
given for the new algorithm.

. A dual-mode NMPC algorithm is developed by
taking the above mentioned two stage single-
channel identification model (TS-SCIM) as the
internal model. The closed-loop stable region is
maximised by using ellipsoidal invariant set
theory together with linear matrix inequality
(LMI) techniques.

This paper is organised as follows. The research
problems are first formulated in the next section.
Then, in x 3, the MCIA and its conversion, TS-SCIA,
are proposed, where their approximation capabilities
are also analysed. Some technical issues about the
dual-mode NMPC algorithm are presented in x 4.
Afterwards, simulations are reported in x 5. Finally,
concluding remarks are given in x 6.

2. Problems formulation

A Hammerstein system is schematically represented in
Figure 1 (Gómez and Baeyens 2004). The model
consists of memoryless non-linear block N(�) in cascade
with a dynamic linear block Gðz�1Þ 2 Hm�n

2 ðTÞ.
The measured output y(k) is subject to an unknown
additive noise input �(k).

The input/output relationship is then given by

yðkÞ ¼ Gðz�1ÞNðuðkÞÞ þ �ðkÞ, ð1Þ

where uðkÞ 2 D � R
n, vðkÞ ¼ NðuðkÞÞ 2 R

n, yðkÞ 2 R
m,

�ðkÞ 2 R
m are the input, intermediate variable,

output and output noise vector at time k, respectively,
in which D is the permission region or constraints
of the input, e.g., for SISO system juðkÞj � �u.
Output noise � (k) can be a white or coloured noise
sequence induced by measurement or external
disturbances, and input signal u(k) can be random or
stationary.

The non-linear block is described as (Gómez and
Baeyens 2004)

NðuðkÞÞ ¼
Xr
i¼1

aigiðuðkÞÞ, ð2Þ

where gið�Þ : R
n
! R

n (i¼ 1, . . . , r) are known
non-linear basis functions, and ai 2 R

n�n are unknown
matrix coefficient parameters. Here, g(�) can be chosen
as polynomials, radial basis functions (RBF), wavelets,
etc. However, it is not the intention of this paper to
give a complete overview of non-linear approximation
using basis functions, and the interested reader is
referred to the works of Sjoberg et al. (1995)
and Juditsky et al. (1995), where a unified overview
of non-linear black-box modelling using basis
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functions, as well as the mathematical foundations

behind these modelling approaches are presented.
On the other hand, the dynamic linear block is

represented by a rational orthonormal basis series as

follows (Gómez and Baeyens 2004):

Gðz�1Þ ¼
XN
l¼1

clLlðz
�1Þ, ð3Þ

where cl 2 R
m�n are unknown matrix parameters,

fLlð�Þg
N
l¼1 can be any rational orthonormal basis on

the space H2(T), and N is the truncation length.

Without loss of generality, fLlð�Þg
N
l¼1 is set as discrete

Laguerre series in this paper (see Appendix 1).

Certainly, a higher order orthonormal basis such as

the Kautz series (Heuberger et al. 1995; Wahlberg and

Mäkilä 1996) can also be used in (3), especially to deal

with the oscillatory non-linearity. Substituting (2) and

(3) into (1) yields

yðkÞ ¼
XN
l¼1

clLlðz
�1Þ

 ! Xr
i¼1

aigiðuðkÞÞ

 !
þ �ðkÞ

¼
XN
l¼1

Xr
i¼1

claiLlðz
�1Þ giðuðkÞÞ½ � þ �ðkÞ: ð4Þ

Define

� ¼
�

c1a1, . . . , c1ar, . . . , cNa1, . . . , cNar½ �
T, ð5Þ

�ðkÞ ¼
�
h
L1ðz

�1Þ gT1 ðuðkÞÞ
� �

, . . . ,L1ðz
�1Þ gTr ðuðkÞÞ
� �

, . . . ,LNðz
�1Þ

� gT1 ðuðkÞÞ
� �

, . . . ,LNðz
�1Þ gTr ðuðkÞÞ
� �iT

: ð6Þ

Note that in real applications, the orthonormal basis

Llðz
�1ÞðgiðuðkÞÞÞðl ¼ 1, . . . ,N; i ¼ 1, . . . , rÞ in (6) and

the system output y(k) in (4) are calculated according

to the state-space equations (63) and (64) in Appendix

1 conveniently. Accordingly, Equation (4) can be

rewritten in a linear regressor form as (Ljung 1999)

yðkÞ ¼ �T�ðkÞ þ �ðkÞ: ð7Þ

Thus, the details of the above operation processes are

shown in Figure 2, with Laguerre filter

G0ðz
�1Þ ¼ ðz�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2

p
Þ=ð1� z�1pÞ,

G1ðz
�1Þ ¼ ðz�1 � pÞ=ð1� z�1pÞ:

ð8Þ

As shown in Figure 3, consider a S-point sampling

data set, and carry out non-linear bases and Laguerre

operations on the input sequence, one has

YS ¼ �T
S� þ�S, ð9Þ

with,

YS ¼
�
½yð1Þ, . . . , yðS Þ�T,

�S ¼
�
½�ð1Þ, . . . , �ðS Þ�T,

�S ¼
�
½�ð1Þ, . . . ,�ðS Þ�T:

ð10Þ

Provided the indicated inverse exists, it is well known

that the estimate �̂ of � minimising the identification

errors ðYS ��T
S�Þ can be obtained by least square

estimation (LSE) (Ljung 1999) as follows:

�̂ ¼ �s�
T
s

� ��1
�sYs: ð11Þ

Figure 1. Problem formulation.
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Then, as shown in Figure 1, two unsolved problems
concerning identification and control are formulated as
follows.

Problem 1 (non-linearity/linearity separation): Separate
the non-linear and linear blocks of the Hammerstein
system with the sampling input/output series. This
operation will extract the unknown parameters
ai(i¼ 1, . . . , r) and ci(l¼ 1, . . . ,N ) from �̂.

Problem 2 (Simplified non-linear controller

development): Based on the above non-linear/linear

blocks separation, design a simplified non-linear
controller to maximise the closed-loop stable region.

3. Identification algorithm (for Problem 1)

It is clear that the parametrisations (2) and (3) are not

unique, because clQ and Q�1ai (Q is an arbitrary
compatible nonsingular matrix) lead to the same input/

output equation. Thus, in order to have a unique
parametrisation, one should normalise the parameter

matrices ai (or cl) as follows:

aik k2¼ 1ði ¼ 1, . . . , rÞ: ð12Þ

To solve Problem 1, as shown in Figure 3, first we

define

�ac ¼
�

aT1 c
T
1 aT1 c

T
2 � � � aT1 c

T
N

aT2 c
T
1 aT2 c

T
2 � � � aT2 c

T
N

..

. ..
. . .

. ..
.

aTr c
T
1 aTr c

T
2 � � � aTr c

T
N

2
66664

3
77775 ¼ acT, ð13Þ

with a ¼
�
½a1, a2, . . . , ar�

T, c ¼
�
½cT1 , . . . , cTN�

T. It can be

easily seen that � is the block column matrix obtained
by stacking the block columns of �ac on the top one by

one. It is clear that the estimates â and ĉ are the
solutions of the optimisation problem

ðâ, ĉÞ ¼ argmin
a, c

�̂ac � acT
��� ���2

2

� �
: ð14Þ

This problem can be solved by the standard SVD

(Golub and Van Loan 1989), and with the prerequisite

(12), the solution of (14) is unique. However, bearing
the spectral nature of SVD in mind, one can easily find

that the closest estimates of a, c are not a single pair
ðâ, ĉÞ but a series of pairs ðâh ji, ĉh jiÞ ð j ¼ 1, . . . ,NCÞ as

shown in Figure 3, which solves the optimisation
problem

âh ji, ĉh ji
� �

¼ arg min
ah ji, ch ji

�̂ac �
XNC

j¼1

ah ji ch ji
� �T�����

�����
2

2

2
4

3
5: ð15Þ

From now on, the pair ðâh ji, ĉh jiÞ is defined as the jth
identification channel, with j and NC being the

sequence index and number of the identification
channels, respectively. Therefore, in order to separate

the non-linear/linear block more effectively, more
channels should be used to compensate the separation

residuals of the single-channel method (Gómez and
Baeyens 2004). To explain it more clearly, we will give

a lemma and a theorem as follows. It should be

noted that, for SISO scenario, the single-channel

Figure 2. Operation details of each identification channel.

Figure 3. The sketch map of the multi-channel modelling
method.
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estimates â and ĉ and the multi-channel estimates âh ji

and ĉh ji are all column vectors, while for n-input and

m-output systems, a ðor ah jiÞ 2 R
rn�n, c ðor ch jiÞ 2 R

Nm�n.

Lemma 1 (Golub and Van Loan 1989): Let

rankð�̂acÞ ¼ q, here �̂ac is the estimate of �ac in (13),

then the SVD of �̂ac is

�̂ ac ¼ Uq�qV
T
q ¼

Xq
j¼1

$j�j#
T
j , ð16Þ

such that the singular value matrix

�q ¼ diagf$jgð j ¼ 1, . . . , minðr,N ÞÞ satisfies

$1 � � � � � $q 4 0 and $l ¼ 0 ðl4 qÞ, ð17Þ

where lj,#j (j¼ 1, 2, . . . , q) are pairwise orthogonal

vectors. As shown in Figure 3, if kah jik2 ¼ 1, then for

8NC ð1 � NC � qÞ, each identification channel can be

calculated by

ah ji, ch ji
� �

¼ argmin �̂ac �
XNC

j¼1

ah ji ch ji
� �T�����

�����
2

2
4

3
5

¼ ð�j,$j�jÞ, j ¼ 1, . . . ,NC, ð18Þ

with approximation error eðNCÞ given by

eðNCÞ ¼
�

�̂ac �
XNC

j¼1

âh jiðĉh jiÞT

�����
�����
2

2

¼
Xq

j¼NCþ1

$2
j : ð19Þ

It can be seen from Lemma 1 that after the SVD

operation, �̂ac is decomposed into a series of pairs

(or channels) ðah ji, ch jiÞ as shown in Figure 3. These

channels should be used to yield a more effective

model. The accuracy enhancement will be proven by

the following theorem.

Theorem 1: For the Hammerstein system (4), with the

identification matrix �̂ac calculated by (11), (14) and

(15), if rank ð�̂acÞ ¼ q � 1, then, with the identification

pairs ðâh ji, ĉh jiÞ (j¼ 1, . . .NC) obtained by (16) and (18)

and the identification error index defined by (19),

one has

eð1Þ4 eð2Þ4 � � � 4 eðqÞ ¼ 0: ð20Þ

In other words, the identification error decreases along

with the increase of NC.

Proof: Under the given conditions, Lemma 1 yields

errorðNCÞ ¼
Pq

j¼NCþ1
$2

j (1�NC� q�1) and error(q)¼ 0,

leading to the conclusion (20). œ

In principle, one can select the suitable NC

according to the approximation error tolerance �e and

(19). Even for the extreme case that �e ¼ 0, one can

still set NC¼ q to eliminate the approximation error,

thus such feasible NC always exists. For simplicity, if

rank ð�̂acÞ � 3, the general parameter setting NC¼ 2 or

3 can work well enough.
According to the conclusions of Lemma 1 and

Theorem 1, multi-channel identification method

should be used instead of the traditional single-channel

one to enhance the modelling accuracy. Therefore,

multi-channel model ymðtÞ ¼
PNC

j¼1 Ĝ
h ji� ðz�1ÞN̂h jiðuðtÞÞ

outperforms single-channel model

ym ðtÞ ¼ Ĝðz�1ÞN̂ðuðtÞÞ in modelling accuracy. Here,

the subscript ‘m’ denotes model output. Then, we

hereby design a multi-channel identification algorithm

(MCIA) based on Theorem 1 as follows.

3.1 MCIA

Multi-channel identification model (MCIM) is

composed of NC parallel channels. As shown in

Figure 2, each channel consists of a static non-linear

block, which is represented by a series of non-linear

basis fg1ð�Þ, g2ð�Þ, . . . , grð�Þg, followed by a dynamic

linear block represented by the discrete Laguerre

model (Heuberger et al. 1995; Wahlberg and

Mäkilä 1996; Wang 2004) in the state-space form

(see Appendix 1). Without loss of generality, the bases

are generally chosen as polynomial function bases

according to the Weierstrass Theorem (Krantz 2004).

Thus, each channel of MCIM is represented by

Lh jiðkþ 1Þ ¼ ALh jiðkÞ þ B
Xr
i¼1

âh jii giðuðkÞÞ

" #
,

ð j ¼ 1, . . . ,NCÞ, ð21Þ

yh jim ðkÞ ¼ ĉh ji
� �T

Lh jiðkÞ ð22Þ

with yð jÞm ðkÞ, L
ð jÞðkÞ ¼ ½L

ð jÞ
1 ðkÞ, L

ð jÞ
2 ðkÞ, . . .L

ð jÞ
N ðkÞ�

T being

the output and the Laguerre state vector of the jth

channel, respectively. Finally, the output of the MCIM

can be synthesised by

ymðkÞ ¼
XNC

j¼1

yh jim ðkÞ: ð23Þ

Now, we will give a convergence theorem to support

the MCIA.

Theorem 2 (convergence theorem): For the

Hammerstein system

yðkÞ ¼
XN
l¼1

clLlðz
�1Þ

Xr
i¼1

aigiðuðkÞÞ

 !
þ �ðkÞ, ð24Þ

6 H.-T. Zhang et al.



XML Template (2008) [15.5.2008–7:21pm] [1–17]
{TANDF_REV}TCON/TCON_A_288714.3d (TCON) [Revised Proof]

with kaik2 ¼ 1, nominal output �yðkÞ ¼
PN

l¼1 clLlðz
�1Þ�

ð
Pr

i¼1 aigiðuðkÞÞÞ and bounded input signal set D

(see (1)). Here Lðz�1Þ ¼ ½L1ðz
�1Þ,L2ðz

�1Þ, . . . ,LNðz
�1Þ�

is the Laguerre state vector. If the regressors �ðkÞ
(see (6)) is PE in the sense that for an arbitrary positive

integer k0 there exist some integer N1 and positive

constants �1 and �2 such that

05�1I �
Xk0þN1

k¼k0

�ðkÞT�ðkÞ � �2I, ð25Þ

and �ðkÞ is unrelated to the external noise �(k), then

XNC

j¼1

âh ji ĉh ji
� �T

�!
a:s:

�ac, ð26Þ

ymðkÞ �!
a:s:

�yðkÞ, ð27Þ

where the symbol ‘�!
a:s:

’ denotes ‘converge with

probability one as the number of the data points S

tends to infinity’, and the model output ym(k) is

determined by (21–23).

Proof: It is referred to Appendix 2. œ

Thus, it can be seen from Theorems 1 and 2 that the

increase of the identification channel number will help

decrease the identification errors. However, in real

industrial processes, owing to its complex structure,

MCIA should be converted into a single channel

algorithm to facilitate the controller development. This

method is a more effective version of SCIA called

two-stage single-channel identification algorithm

(TS-SCIA), since it preserves most of the advantages

of MCIA. In this approach, SVD is first implemented

to get the first identification channel coefficient âh1i

and ĉh1i, then âh1i is fixed while ĉh1i is set as the initial

value. Afterwards, normalised recursive LSE (Adel

et al. 1999) will be used to update ĉh1i so as to minimise

the modelling error.
The advantage of TS-SCIA is that the Laguerre

states fLðkÞ, k ¼ 1, 2, . . .g will not be influenced by the

updating of ĉh1i. Since âh1i are fixed and A,B (see (21)

and Appendix 1) are determined offline, the only

parameter required to be tuned online is ĉh1i.

Therefore, this approach can yield satisfactory

performances even when the convergence conditions

of traditional SCIA in the work of Gómez and Baeyens

(2004) are not satisfied. Furthermore, this mechanism

can facilitate the subsequential controller design.

This will be also validated by the case studies discussed

in x 6. From now on, for convenience, we will denote

âh1i, ĉh1i and vh1i of TS-SCIA simply by â, ĉ and v,

respectively.

4. Dual-mode predictive control algorithm

(for Problem 2)

4.1 Control algorithm

To address the second problem proposed in x 2, in

this section, first the TS-SCIA identification method

is used to separate the linear and non-linear blocks

of the Hammerstein system, then the intermediate

variable control law v(k) is gained based on

the linear block dynamics. Afterwards, one can

calculate the control law u(k) according to the

inverse of v(k). Hence, for SISO Hammerstein

systems (4) subject to input magnitude constraints

juðkÞj � �u ( �u 2 R
þ), suppose the following two

assumptions hold

A1 a, c can be precisely identified by TS-SCIA, i.e.,

a ¼ â, c ¼ ĉ: ð28Þ

A2 When juðkÞj � �u, the inverse of N(�) exists

(see (1), (2)). Moreover,

N N�1zeroinðvðkÞÞ
� �

¼
�

�vðkÞ ¼ 1þ �ðvðkÞÞ½ �vðkÞ, ð29Þ

with

�ðvðkÞÞ
		 		 � �ð� 2 R

þ
Þ, ð30Þ

where N�1zeroin ð�Þ denotes the inverse of N(�) calculated

by the Zeroin algorithm (George et al. 1977).

The reason of choosing zeroin algorithm is given as

follows. According to the theoretical analysis later in

this section, more accurate inversion calculation

method of N�1(�) implies larger size of stable region.

Taking into consideration of the high accuracy

and high convergent speed of zeroin method

(George et al. 1977), we apply it to calculate N�1(�).

In real applications, one can use the function fzero() of

MATLAB to calculate N�1zeroinð�Þ with convenience.

Certainly, other kinds of high efficient inverse solving

methods can also be applied. Moreover, there are

still some other feasible assumptions similar to

Assumption A2; interested readers can refer to the

works of Ding et al. (2004) and Ding and Xi (2006) for

more details.
For convenience, if �(v(k)) is denoted by �(�) then

the controlled plant is described as follows (Ding and

Xi 2004):

Lðkþ 1Þ ¼ ALðkÞ þ B �vðkÞ ¼ ALðkÞ þ B½1þ �ð�Þ�vðkÞ,

ð31Þ

yðkÞ ¼ cLðkÞ, ð32Þ

International Journal of Control 7
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Since L(k) is an immeasurable state, a state observer
� 2 R

N�1 is used to estimate L(k) as follows:

L̂ðkþ 1Þ ¼ AL̂ðkÞ þ B½1þ �ð�Þ�vðkÞ þ �ceðkÞ, ð33Þ

eðkþ 1Þ ¼ �eðkÞ, ð34Þ

where L̂ðkÞ is the estimation of L(k), eðkÞ ¼ LðkÞ � L̂ðkÞ
is the state estimation error, and � ¼ A� �c is
Hurwitz.

Then, a NMPC law is designed with an additional
term Dðkþ i j kÞ as follows:

vðkþ i j kÞ ¼ KL̂ðkþ i j kÞ þ EDðkþ i j kÞ, ð35Þ

uðk j kÞ ¼ N�1zeroin½vðk j kÞ�: ð36Þ

where E ¼ ½1, 0, . . . , 0�1�M, L̂ðk j kÞ ¼ L̂ðkÞ, vðk j kÞ ¼ vðkÞ,
Dðk j kÞ ¼ DðkÞ ¼ ½dðkÞ, . . . , dðkþM� 1Þ�T is defined
as a perturbation signal vector representing extra
degrees of design freedom (Kouvaritakis et al. 2000)
and the role of D(k) is merely to ensure the feasibility
of the control law (33–36), and Dðkþ i j kÞ is designed
such that

Dðkþ i j kÞ ¼ TDðkþ i� 1jkÞ ði ¼ 1, . . . ,MÞ,

where

T ¼
0 IðM�1Þ�ðM�1Þ

0 0T


 �
M�M

,

M�2 is called the prediction horizon, and 0 is
compatible zero column vector.

Then, substituting (35) into (33) yields

L̂ðkþ i j kÞ ¼ ½	þ BK�ð�Þ�L̂ðkþ i� 1jkÞ

þ ½1þ �ð�Þ�BEDðkþ i� 1jkÞ

þ �ceðkþ i� 1jkÞ, ði ¼ 1, . . . ,MÞ,

ð37Þ

or

x̂ðkþ i j kÞ ¼ 
x̂ðkþ i� 1jkÞ þ
�ð�ÞB �K

0

" #
x̂ðkþ i� 1jkÞ

þ
�c

0


 �
e kþ i� 1jkð Þ, ði ¼ 1, . . . ,MÞ,

ð38Þ

with

x̂ðkþ i jkÞ ¼
L̂ðkþ i jkÞ

Dðkþ i jkÞ

" #
, 
¼

	 BE

0 T


 �
, �K¼ ½K,E�,

where 	 ¼ Aþ BK is Hurwitz.
Now, in order to stabilise the closed-loop

system (38), define two ellipsoidal invariant sets of

the extended state estimations x̂ðkÞ and e(k), respec-
tively (Kouvaritakis et al. 2000; Cao et al. 2006)

Sx ¼
�

x̂ðkÞjx̂TðkÞPxx̂ðkÞ � 1
� 

, ð39Þ

and

Se ¼
�

eðkÞjeTðkÞPeeðkÞ � �e
� 

, ð05 �e � 1Þ, ð40Þ

where Px and Pe are both positive-definite symmetric
matrices and the perturbation signal vector D(k)
(see (35)) is calculated by solving the following
optimisation problem

min
D kð Þ

JðkÞ ¼ DTðkÞDðkÞ,

s:t: x̂TðkÞPxx̂ðkÞ � 1: ð41Þ

To guarantee the feasibility and stability of the control
law (33–36), it is required to find the suitable matrices
P and Pe assuring the invariance of Sx and Se, and
meanwhile guaranteeing the feasibility of the control
law. Hence, the following lemma is derived to provide
the sufficient conditions for the invariance and input
constraints satisfaction.

Lemma 2 (invariant lemma of dual-mode predictive
control): Consider a closed-loop Hammerstein system
(13) whose dynamics is determined by the output-
feedback control law (33–36) and (41) and subject to
the input magnitude constraints juðkÞj � �u, the ellips-
oidal set Sx and Se are invariant in the sense of (39)
and (40), respectively, and the control law (33–36) and
(41) is feasible provided that Assumptions A1, A2 and
the following three Assumptions A3–A5 are all
fulfilled.

A3 the matrices � and � are both Hurwitz;

A4 there exist �1 4 1, �2 4 1, 05 �e5 1ð�1, �2, �e 2 RÞ

such that

�TPe� � Pe, ð42Þ

	1c
T�TET

LPxEL�c � Pe, ð43Þ

�1�2

TPx
þ �1	2�

2 �KTBTET
LPxELB �K � ð1� �e2ÞPx,

ð44Þ

where 	1 ¼ 1þ ð�1 � 1Þ�1, 	2 ¼ 1þ ð�2 � 1Þ�1 and

ET
L ¼

1 0 � � � � � � 0

..

. . .
.

0 � � � ..
.

0 0 1 � � � 0

2
664

3
775

N�ðNþMÞ

is the projection matrix such that ET
Lx̂ðkÞ ¼ L̂ðkÞ;
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A5 there exist 
4 0 and � 2 ð0, �uÞ such that

u kð Þ
		 		 ¼ N�1Zeroin v kð Þð Þ

		 		 � 
 v kð Þ
		 		

þ � ðlocal lipschitz condition ðKhalil 2002ÞÞ

ð45Þ

and

�ðð �u� �Þ=
Þ2 �K

�KT �Px

" #
� 0: ð46Þ

Proof: It is referred to Appendix 3. œ

Based on Lemma 2, we can design the controller

structure as shown in Figure 4.

Remark 1: If the control horizon M¼ 0, i.e., the

perturbation signal vector is not applied, then

the degree of design freedom is minimised and

the predictive control law (33–36) reduced to the

standard output feedback law (or initial control law) as

vðkÞ ¼ KL̂ðkÞ,

uðkÞ ¼ N�1zeroin½vðkÞ�, ð47Þ

and the invariant set Sx shrinks to

SxðM ¼ 0Þ ¼
�
SL ¼ fL̂ðkÞjL̂

TðkÞPLLL̂ðkÞ � 1g: ð48Þ

Here, (47) is called the initial control law since it

can drive L̂ðkÞ to the origin asymptotically provided

that the initial state estimation L̂ð0Þ is inside SL.

However, it will be proven in x 4.2 that Sx will be

minimised whenM¼ 0, which minimises the possibility

of L̂ð0Þ 2 Sx. Fortunately, as will be proven later, the

perturbation signal vector D(k) in (35) can enlarge the

stable region effectively. The algorithm determined in

Lemma 2 is called dual-mode NMPC with more details

given as follows.
If the current L̂ðkÞ moves outside of SL, then the

controller enters the first mode, in which the dimension

of L̂ðkÞ is extended from N to (NþM) by D(k)

(see (38)). Then, L̂ðkÞ will be driven into SL in no more

than M steps, i.e., L̂ðkþMjkÞ 2 SL, which will also be

proven in x 4.2. Once L̂ðkÞ enters SL, the controller is

automatically switched to the second mode, in which

the initial control law (47) is feasible and can stabilise

the system.

Remark 2: In general, there are two typical control

problems (Chen 1998a):

. Regulator problem: Suppose the set-point signal

r(k) is zero, and the response of the system

is caused only by some non-zero initial

conditions. The problem is to find an output-

feedback gain so that the response will die out at

a desired rate.
. Tracking problem: Suppose the reference signal

r(t)¼ a. The problem is to design an overall

system so that y(t) approaches r(t)¼ a as t

approaches infinity.

The above algorithm is focused on the first problem.

To solve the second one, (35) can be converted to the

following control law:

vðkÞ ¼ �Kx̂ðkÞ þ a�, ð49Þ

Figure 4. Dual-model predictive controller structure, with 1=� ¼ limz!1ð �cðzI�
Þ�1 �BÞ.
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with 1=� ¼ limz!1ð �cðzI�
Þ�1 �BÞ, �c ¼ ½c, 0�1�ðNþMÞ,
�B ¼ ½BT, 0�TðNþMÞ�1. Moreover, if (I�
) is nonsingular,

one can make the coordinate transforma-

tion x̂ðkÞ � xc ! x̂ðkÞ, with xc ¼ ðI�
Þ�1Ba�,
obtaining (38). Even if (I�
) is singular, one

can still make some suitable coordinate transformation

to obtain (38). In this sense, the above two

control problems are equivalent. On the other hand,

if the constraints are asymmetric, i.e., umin � u �

umax, ðumin 6¼ �umaxÞ, then one can use another coordi-

nate transformation, uðkÞ � ðumax þ uminÞ=2! uðkÞ, to

symmetrize the constraints.

Remark 3: It is validated by extensive simulations

that Assumptions A4 and A5 are not difficult to fulfil.

A detailed procedure to calculate Px and Pe is given

here. First, the stable state-feedback gain K (see (35))

and observer gain L (see (33)) are pre-calculated by

MATLAB. Then, compute Pe based on (42).

Afterwards, select 
 (generally in the range (0, 1) and

� 2 ð0, �uÞ satisfying the local Lipschitz condition (45).

Finally, select �1, �24 1 (generally in the range

(1, 1.5)), and calculate Px by LMI toolbox of

MATLAB according to (43), (44), (46), the

pre-determined constant �e and the pre-calculated

matrix Pe.

4.2 Stability analysis

Rewrite the positive-definite matrix Px as

Px ¼
ðPLLÞN�N PLD

PLD ðPDDÞM�M


 �
,

then it follows from (39) that (Kouvaritakis et al. 2000)

L̂TðkÞPLLL̂ðkÞ � 1� 2L̂TðkÞPLDDðkÞ �DTðkÞPDDDðkÞ,

ð50Þ

and

� P�1DDP
T
LDL̂ðkÞ

¼ arg max
D kð Þ

½1� 2L̂TðkÞPLDDðkÞ �DTðkÞPDDDðkÞ�:

ð51Þ

Then substituting (51) into (50) yields

L̂TðkÞ PLL � PLDP
�1
D PT

LD

� �
L̂ðkÞ � 1: ð52Þ

Hence, the maximised ellipsoidal invariant set of the

initial Laguerre state L̂ðkÞ is given as follows:

SLM ¼
�

L̂ðkÞjL̂TðkÞ PLL � PLDP
�1
DDP

T
LD

� �
L̂ðkÞ � 1

n o
:

ð53Þ

Bearing in mind that PLL � PLDP
�1
D PDL ¼

ðET
LP
�1
x ELÞ

�1(see Assumption A4 for EL), it follows

immediately from (53) that volume of the ellipsoid set

SLM satisfies

volðSLMÞ / det ET
LP
�1
x EL

� �
, ð54Þ

where vol(�) and det(�) denotes volume and

matrix determinant and the symbol ‘/’ means

‘proportional to’. A graphical illustration of the benefit

of the maximiser �P�1DDP
T
LDL̂ðkÞ is given in the

reference (Kouvaritakis et al. 2000). Moreover, it

will be verified later by case study that the present

dual-mode NMPC can effectively increase the value of

ET
LP
�1
x EL with the assistance of perturbation signal

vector D(k), and the closed-loop stable region SLM is

thus effectively enlarged.
Based on the above mentioned analysis of the size

of the invariant set SLM, we give the nominal closed-

loop stability theorem as follows.

Theorem 3 (nominal closed-loop stability

theorem): Consider a closed-loop Hammerstein

system (13) whose dynamics is determined by the

output-feedback control law (33–36) and (41) and subject

to the input magnitude constraints juðkÞj � �u, the system

is closed-loop asymptotically stable provided that

Assumptions A1–A5 are fulfilled.

Proof: Based on Assumptions A1–A5, one has that

there exists D(kþ 1) such that xðkþ 1Þ 2 Sx for

arbitrary xðkÞ 2 Sx; then by invariant property, at

next sampling time ~Dðkþ 1jkÞ ¼ TDðkÞ (see (36))

provides a feasible choice for D(kþ 1) (only if

D(k)¼ 0, J(kþ 1jJ(k)), otherwise J(kþ 1j5 J(k))).

Thus, the present NMPC law (33–36) and (41)

generates a sequence of D(kþ i j k)¼TD(kþ i j k)

(i¼ 1 , . . . ,M) which converges to zero in M steps

and ensures the input magnitudes constraints satisfac-

tion. Certainly, it is obvious that TD(k) need not have

the optimal value of D(kþ 1) at the current time, hence

the cost J(kþ 1) (see (41)) can be reduced further still.

Actually, the optimal D*(kþ 1) is obtained by solving

(41), thus J*(kþ 1)� J(kþ 1 j k)5 J(k)(D(k) 6¼ 0).

Therefore, as the sampling time k increases, the

optimisation index function J(k) will decrease mono-

tonously and D(k) will converge to zero in no more

than M steps. Given constraints satisfaction, the

system state L̂ðkÞ will enter the invariant set SL in no

more than M steps. Afterwards, the initial control law

(47) will make the closed-loop system asymptotically

stable. This completes the proof. œ

It still should be noted that since the above analysis is

based on the Assumption A1, Theorem 3 can only

guarantee nominal stability.
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5. A case study

Plant: Heat exchanger system (Eskinat and

Johnson 1991)

vðkÞ ¼ �31:549uðkÞ þ 41:732u2ðkÞ

� 24:201u3ðkÞ þ 68:634u4ðkÞ, ð55Þ

yðkÞ ¼
0:207z�1 � 0:1764z�2

1� 1:608z�1 þ 0:6385z�2
vðkÞ þ �ðkÞ, ð56Þ

the output noise �(k) satisfies

Ef�2ðkÞ=Fk�1g ¼
a:s:

0:5, ð57Þ

where �ðkÞ 2 ð�, F,PÞ, ðk ¼ 1, 2, . . .Þ and E(�)

represents the mathematical expectation.

5.1 Identification

In order to examine the effectiveness of MCIA and

TS-SCIA for a sufficient broad range of input signal

frequency, we select the following input signal

containing three different frequencies

uðkÞ ¼ 0:2cosð0:015kÞ þ 1:3sinð0:005kÞ þ 0:4 sinð0:01kÞ:

ð58Þ

The modelling results of SCIA (NC¼ 1), TS-SCIA

(NC¼ 1) and MCIA (NC� 2) based on Laguerre

models with truncation length N¼ 2 and N¼ 3 are

shown in Figures 5 and 6, respectively. The modelling

error eðkÞ ¼ ½yðkÞ � ymðkÞ�=maxk½yðkÞ� ðk ¼ 1, . . . , 600Þ

and e1(k), e2(k), e3(k) denote the modelling errors of

SCIA, TS-SCIA and MCIA respectively.
The parameters setting is S¼ 600, p¼ 0.10, r¼ 5,

the non-linear basis {g1(u), . . . , g5(u)}¼ {1, u, . . . , u4},

and the number of identification channels in MCIA is

set as NC¼ 2 (Figure 5), NC¼ 3 (Figure 6). Then,

calculations shows that rank ð�̂acÞ ¼ 2 (Figure 5),

rank ð�̂acÞ ¼ 3 (Figure 6), and the corresponding

singular values of �̂ac are {19.8779, 2.4032} and

{2.5818, 0.6212, 0.1742}, respectively. Thus, according

to Theorem 1, SCIA cannot yield satisfactory

modelling performances whereas TS-SCIA and

MCIA can. This is also verified by the simulation

results in Figures 5 and 6. Further, statistical

experiments were also carried out to test the modelling

performances. More precisely, we select p and r

from the sets {0.08, 0.09, 0.10, 0.11, 0.12} and

{4, 5, 6, 7} respectively. The results is shown in

Table 1, where &fjeðkÞjg denotes the standard deviation

of je(k)j.
From these results, we conclude that

. the identification accuracy increases with the

enhancement of N and NC;
. compared with MCIA, the precision loss of

TS-SCIA is sufficiently small while the

counterpart of SCIA is not.

Figure 5. Identification performance (N¼ 2).

Figure 6. Identification performance (N¼ 3).

Table 1. Statistical modelling performances.

N¼ 2 N¼ 3

Identification
algorithm

E(je(k)j)
(ø)

&½eðkÞ�
(ø)

E(je(k)j)
(ø)

&½eðkÞ�
(ø)

SCIA 8.84 10.2 3.87 6.4
TS-SCIA 4.92 8.8 0.57 6.4
MCIA 4.13 7.6 0.51 6.3
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The effectiveness of TS-SCIA and MCIA is thus

validated. Note that the minimal identification is

determined by not the SVD in (18) but the LSE �̂ in

(11), thus it is not necessary to discuss the overfitting

case in this identification simulation.

5.2 Control

The present dual-mode NMPC is performed in the heat

exchanger system model (55–57) with the results shown

in Figures 7, 8 (regulator problem, N¼ 2),

Figures 9–11 (Regulator Problem, N¼ 3) and

Figure 12 (tracking problem, N¼ 3), respectively.

The correspondence parameter settings are presented

in Table 2.
In these numerical examples, the initial state-

feedback gain K and state observer gain � are

optimised offline via DLQR and KALMAN functions

of MATLAB 6.5, respectively. The curves of y(k), u(k),
�vðkÞ and the first element of D(k), i.e. d(1), are shown in

Figure 7 (N¼ 2) and Figure 8 (N¼ 3), respectively.

To illustrate the superiority of the proposed dual-mode

NMPC, we present the curve of L̂ðkÞ, the invariant sets

of SL and SLM in Figure 8 (N¼ 2, M¼ {2, 8, 10}) and

Figure 10 and 11 (N¼ 3, M¼{0,5,10}). One can find

that L̂ð0Þ is outside the feasible initial invariant set SL

(refer to (48), see the red ellipse in Figure 10 and the

left subfigure of Figure 11). Then the state extension

Figure 7. Control performance of regulator problem (N¼ 2).

Figure 8. The track of system state and invariant set
SL (N¼ 2).

Figure 9. Control performance of regulator problem (N¼ 3).

Figure 10. The track of system state and invariant set SL

(N¼ 3, M¼ 10).
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with M¼ 10 is used to enlarge SL to SLM (refer to (52),

see the black ellipse in Figure 8 and the right subfigure

of Figure 11) containing L̂ð0Þ. After eight (Figure 8) or

six steps (Figure 10), L̂ðkÞ enters SL. Afterwards, the

initial control law (47) can stabilise the system and lets

the state approach the origin asymptotically. Lemma 2

and Theorem 3 are thus verified. Moreover, the

numerical results of Figures 8 and 11 also have verified

the conclusion of the ellipsoid volume relation (54), i.e.

the size of SLM increases along with the enhancement

of the prediction horizon M.
As to the tracking problem (see Figure 12), one

should focus on the system state response to the change

of the set-point. In this case, L̂ðkÞ moves outside SL,

thus D(k) is activated to enlarge SL to SLM and then to

drive L̂ðkÞ from SLM to SL in no more than M steps.

After 60 sampling periods, the overshooting,

modulating time and steady-state error are 2.2%,

15 and 0.3% respectively. Moreover, robustness to the

time-delay variations is examined at the 270th

sampling period, while the linear block of this plant

is changed from (58) to

yðkþ 1Þ ¼
0:207z�1 � 0:1764z�2

1� 1:608z�1 þ 0:6385z�2
vðkÞ: ð59Þ

Dual-mode NMPC can still yield satisfactory perfor-

mances, thanks to the capability of the Laguerre series

in the inner model. The feasibility and superiority of

the proposed control algorithm are thus demonstrated

by simulations on both regulator and tracking

problems.
It is still worth mentioning that some other

simulations also show that the size of SLM increases

as � decreases. In other words, more accurate

identification and inverse solving algorithms would

help further enlarge the closed-loop stable region.

Fortunately, the proposed TS-SCIA can do this job

quite well.

To further investigate the proposed dual-mode

NMPC, a number of experiments were carried out to

yield statistical results. More precisely, {�,
, �}
are fixed to {0.70, 0.35, 1.12}, and N,M and � are

selected from the sets {2, 3, 4}, {8, 9, . . . , 18} and

{0.001, 0.002, . . . ,0.005}, respectively. The set-point is

the same as Figure 12. In this set-up, 165 experiments

were performed. The statistical results, such as

expectations and optimal values for the settling time,

overshooting, steady-state error and computational

time of 400 steps are shown in Table 3. In addition, the

corresponding optimal parameters are given.

The statistical results further illustrate the advantages

of the proposed algorithm regarding transient perfor-

mance, steady-state performance and robustness to

system uncertainties.

Remark 4: The increase of the Laguerre truncation

length N can help enhance the modelling and

control accuracy at the cost of an increasing

Figure 11. Invariant sets SL (left) and SLM, M¼ 5 (middle), M¼ 3 (right), (N¼ 3).

Figure 12. Control performance of tracking problem.
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computational complexity. Therefore, a tradeoff must
be made between accuracy and computational com-
plexity. Note that the general parameter setting
procedure is given in Remark 3.

6. Conclusion

In this paper, a novel multi-channel identification
algorithm has been proposed to solve the modelling
problem for constrained Hammerstein systems. Under
some weak assumptions on the persistent excitation of
the input, the algorithm provides consistent estimates
even in the presence of coloured output noise, and can
eliminate any need for prior knowledge about the
system. Moreover, it can effectively reduce the
identification errors as compared to the traditional
algorithms. To facilitate the controller design, the
MCIA is converted to a two-stage identification
algorithm called TS-SCIA, which preserve almost all
the advantages of the former. In addition, to support
these two algorithms, systematical analyses about their
convergence and approximation capability has been
provided. Based on the TS-SCIA, a novel dual-mode
NMPC is developed for process control. This approach
is capable of enlarging the closed-loop stable region by
providing extra degrees of design freedom. Finally,
modelling and control simulations have been

performed on a benchmark Hammerstein system, i.e.,
a heat exchanger model. The statistical results have
demonstrated the feasibility and superiority of the
proposed identification and control algorithms for
a large class of non-linear dynamic systems often
encountered in industrial processes.
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Appendix 1

Laguerre functional series model

Definition 1 (Heuberger et al. 1995; Wahlberg and Mäkilä
1996; Wang 2004; Zhang et al. 2006; Zhang and Li 2007): A
Laguerre function is defined as a functional series

�iðtÞ ¼
� ffiffiffiffiffi

2p
p ept

ði� 1Þ!
�
di�1

dti�1
½ti�1 � e�2pt� i ¼ 1, 2, . . . ,1,

ð60Þ

where p is a time-scaling factor and t 2 ½0,1Þ is a time
variable.

Theorem 4 (Wahlberg and Mäkilä 1996; Heuberger et al.
1995): A Laguerre function series generates a group of
self-contained unified orthogonal radixes in the function space
L2ðR

þ
Þ.

The Z-transfer function of the mth Laguerre function is given
by (Heuberger et al. 1995)

�mðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� p2Þ

p
z� p

1� pz

z� p


 �m
ðm ¼ 1, 2, . . .Þ: ð61Þ

The discrete Laguerre function series is defined in the time
domain for some 0 � p5 1, m ¼ 1, 2, . . . ,1, by the inverse
Z-transform of (60)

LmðkÞ ¼ Z�1f�mðzÞg: ð62Þ

By examining the network structure of the Z-transfer
functions of Laguerre filters (see Figure 2), one can find
that the set of discrete laguerre function series satisfies the
following difference equations (Wang 2004)

Lðkþ 1Þ ¼ ALðkÞ þ BuðkÞ, ð63Þ

ymðkÞ ¼ cTLðkÞ, ð64Þ

where

A ¼

p 0 0 � � � 0

 p 0 � � � 0

�p  p � � � 0

p2 �p  � � � 0

..

.

ð�1ÞN�2pN�2 ð�1ÞN�3pN�3 � � �  p

2
6666666664

3
7777777775

N�N

,

B ¼

1=2

ð�pÞ1=2

..

.

ð�pÞN�11=2

2
66664

3
77775

N�1

,

 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2

p
; LðkÞ ¼ ½L1ðkÞ,L2ðkÞ, . . . ,LNðkÞ�

T is the state
vector of the Laguerre Series model; c¼ [c1, c2, . . . , cN]

T is the
Laguerre coefficient vector; and u(k), ym(k) are the input and
output of this model, respectively. Here, the Laguerre filter
pole p is the most important parameter, to optimise which Fu
and Dumont (1993) and Tanguy et al. (1995) have proposed
a suboptimal offline method. The method is based on the
minimisation of an upper bound for the modelling error,
which has received considerable interest owing to its
simplicity, its low computational cost, and its relatively
good efficiency. From this method, Tanguy et al. (2000)
derive a technique for suboptimal online optimisation of the
Laguerre filters parameter, which has the merits of good
stability, convergence and numerical robustness. We will
follow the method of Tanguy et al. (2000) to set the initial
value and then finely adjust p according to the control
performances. For another modelling parameter, i.e.
Laguerre model truncation length N, there are no theoretical
criteria except some empirical ones in the literature.

Appendix 2

Proof of Theorem 2: Since the linear block is stable,
gi(u(k))(i 1, 2, . . . , r) and is bounded (because u(k)2D is
bounded and gi(�) are non-linear basis functions), the
model output ym(k) is bounded. Taking equations (21) and
(6) into consideration, one has that k�ðkÞk2 is bounded,
i.e., 9RL 4 0 such that

�ðkÞ
�� ��2

2
� RL: ð65Þ

For any "4 0, 9"1, "2 4 0 such that "¼ "1þ "2. Let
"3¼ "1/(max(r,N )RL) and "4¼ "2/RL. Because the regressor
�(k) is PE in the sense of (25) and is unrelated to �(k),
one has that the LSE �̂ is strongly consistent in sense that
�̂! � with probability one as S!1 (denoted �̂ �!

a:s:
�)

(Ljung 1999); in other words, 8"4 4 0, 9N"4 1 such that

k�̂ � �k22 � "4, ð66Þ
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with probability one for S4N". The convergence of the
estimation �̂ implies that

�̂ac �!
a:s:

�ac ð67Þ

It should be noted that the consistency of the estimation �̂
holds even in the presence of coloured output noise (Gómez
and Baeyens 2004).

Using Lemma 1, one can get the SVD of the matrix �̂ac

and, assuming rank ð�̂acÞ ¼ q, it follows from Theorem 1
that 8"3 4 0, there exists NC� q such that

Xq
m¼NCþ1

$2
m � "3: ð68Þ

In other words,

XNC

j¼1

âh ji ĉh ji
� �T

� �̂ac

�����
�����
2

2

� "3, ð69Þ

or

XNC

j¼1

âh ji ĉh ji
� �T

! �̂ac: ð70Þ

Combining (67) with (70) yields conclusion (26). It should be
noted that NC is the total number of the identification
channels.

Define

�̂h ji ¼
�
½ĉh ji1 âh ji1 , ĉh ji1 âh ji2 , . . . , ĉh ji1 âh jir , ĉh ji2 âh ji1 , . . . , ĉh ji2 âh jir , . . . , ĉh jiN âh jir �

T,

ð71Þ

then 8S4N", the following inequality holds with
probability one:

ymðkÞ� �yðkÞ½ �
2
¼ �TðkÞ

XNC

j¼1

�̂ jh i � �̂þ �̂� �

 !" #2

�RL

XNC

j¼1

�̂ jh i � �̂

�����
�����
2

2

þRL �̂� �
��� ���2

2

�RLmaxðr,NÞ
XNC

j¼1

$j
j’j� �̂ac

�����
�����
2

2

þRL �̂� �
��� ���2

2

¼RLmaxðr,NÞ"3þRL"4 ¼ ", ð72Þ

where the definition of matrix 2-norm is given in the
reference (Gómez and Baeyens 2004). In other words, the
conclusion (27) holds. This completes the proof.

Appendix 3

Lemma 3: For any �4 1 and 	¼ 1þ (�� 1)�1, one has the
following inequality

ðA1 þ A2Þ
TPðA1 þ A2Þ � �A

T
1PA1 þ 	A

T
2PA2, ð73Þ

where P is a positive-definite symmetric matrix, and A1 and A2

are compatible square matrices.

Proof: For any �4 1 one has

ðA1 þ A2Þ
TPðA1 þ A2Þ ¼ �A

T
1PA1 þ ½1þ ð� � 1Þ�1�AT

2PA2

� ð� � 1Þ½A1 � ð� � 1Þ�1A2�
T

� P½A1 � ð� � 1Þ�1A2�

� �AT
1PA1 þ ½1þ ð� � 1Þ�1�AT

2PA2:

œ

Proof of Lemma 2: From Lemma 3 and (38), one
has 8�1, �2 4 0 and 	1¼ 1þ (�1� 1)�1, 	2¼ 1þ (�2� 1)�1,
such that

x̂Tðkþ i j kÞPxx̂ðkþ i j kÞ

� �1 
x̂ðkþ i� 1jkÞ þ
�ð�ÞB �K

0

" #
x̂ðkþ i� 1jkÞ

 !T

Px

� 
x̂ðkþ i� 1jkÞ þ
�ð�ÞB �K

0

" #
x̂ðkþ i� 1jkÞ

 !

þ 	1
�c

0


 �
eðkþ i� 1jkÞ

� �T

Px

�c

0


 �
eðkþ i� 1jkÞ

� �
� �1�2 
x̂ðkþ i� 1jkÞð Þ

TPx 
x̂ðkþ i� 1jkÞð Þ

þ �1	2
�ð�ÞB �K

0

" #
x̂ðkþ i� 1jkÞ

 !T

� Px
�ð�ÞB �K

0

" #
x̂ðkþ i� 1jkÞ

 !

þ 	1e
Tðkþ i� 1jkÞĉT�TET

LPxEL�ceðkþ i� 1jkÞ

� �1�2x̂
Tðkþ i� 1jkÞ
TPx
x̂ðkþ i� 1jkÞ

þ �1	2x̂
Tðkþ i� 1jkÞ�2 �KTBTET

LPxELB �Kx̂ðkþ i� 1jkÞ

þ 	1e
Tðkþ i� 1jkÞcT�TET

LPxEL�ceðkþ i� 1jkÞ:

Thus if (43) and (44) hold and x̂Tðkþ i� 1jkÞ�
Pxx̂ðkþ i� 1jkÞ � 1, then x̂Tðkþ i j kÞPxx̂ðkþ i j kÞ � 1, i.e.
Sx is an invariant set.

As to the state estimation error e(k), one has

eTðkþ i j kÞPeeðkþ i j kÞ ¼ eTðkþ i� 1jkÞ�TPe�eðkþ i� 1jkÞ:

ð74Þ

Thus, if (42) holds and eTðkþ i� 1jkÞPeeðkþ i� 1jkÞ � �e,
then eTðkþ i j kÞPeeðkþ i j kÞ � �e, i.e., Se is an invariant set.

On the other hand,

vðkÞ
		 		 ¼ �Kx̂ðkÞ

		 		 ¼ �KP�1=2x P1=2
x x̂ðkÞ

		 		
� �KP�1=2x

�� �� � P1=2
x x̂ðkÞ

�� ��
� �KP�1=2x

�� ��: ð75Þ

Then, substituting (46) into (75) yields

vðkÞ
		 		 � ð �u� �1Þ=
1, ð76Þ

and substituting (76) into the local Lipschitz condition (45)
yields juðkÞj � �u.

This completes the proof. œ
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