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Abstract

Optimal control problems for constrained linear systems with a linear cost can be posed as multiparametric linear programs
with a parameter in the cost, or equivalently the right-hand side of the constraints, and solved explicitly offline. Degeneracy
occurs when the control input, or optimiser, is non-unique, which can cause chattering of the control input and overlap of
the polyhedral regions of the explicit solution. This paper introduces a new and efficient approach to the computation of the
solution to a multiparametric linear program with the parameter in the cost in the presence of degeneracy. Rather than solve
the degenerate problem directly, we solve a lexicographically (symbolically) perturbed version of it that is guaranteed to be
non-degenerate. We show that every optimal solution of the perturbed problem is an optimal solution to the original and
that the perturbed solution is continuous, unique and defined over a set of non-overlapping polyhedral regions. Furthermore,
we introduce a new method for computing the optimal solution in an adjacent region that is very efficient in all cases, and
reduces to a single simplex pivot for non-degenerate regions. The proposed algorithm is particularly suited for the calculation
of the explicit solution to a class of constrained optimal control problems, since it ensures that the control input is everywhere
continuous and unique, thereby removing the danger of chattering in problems with linear costs. The algorithm is compared
through example to existing proposals and a significant complexity improvement is demonstrated.
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1 Introduction

A multi-parametric linear program (mpLP) allows the
data of a standard linear program to vary as a function
of one or more parameters. mpLP solvers subdivide the
set of feasible parameters into polyhedral regions in each
of which the optimal solution is an affine function of the
parameter. Once all such regions have been enumerated,
the optimiser can then be computed for a given param-
eter by determining the region in which the parameter
lies and evaluating the associated affine function. In this
paper we consider the class of mpLPs that have parame-
ters entering linearly into the cost or the right-hand side
of the constraints, but not both simultaneously.

Although the original work on solving such problems by
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Gal and Nedoma [12] was done in the 1970s, there has
recently been a resurgence of interest. This new work
has been driven by the fact that the explicit solution
to a class of constrained optimal controls problems can
be computed using a multiparametric program [3, 4].
There are currently three classes of algorithms for solv-
ing mpLPs. The original in [12] enumerates all optimal
bases of the problem using a method derived from the
simplex algorithm. A similar algorithm was proposed
in [19] in which all of the bases of the dual-constraints
are enumerated. A geometric approach has been pro-
posed [3, 8] that directly explores the set of feasible pa-
rameters in a recursive manner, subdividing the feasible
parameter space into so-called critical regions, in which
the set of active constraints at the optimiser does not
change. This method can introduce a large number of
artificial cuts in the parameter space and an extension
of this algorithm in [1,14,22] addresses this problem by
enumerating the regions in a non-recursive manner by
stepping a sufficiently small distance over the facets of
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each region to find a point in a neighbouring region.

A primary problem for all mpLP algorithms is degener-
acy. When an mpLP is degenerate, there is no longer a
unique mapping from the parameter to the optimiser and
the polyhedral subdivision is non-unique. These proper-
ties can result in overlapping regions and discontinuous
optimisers. Both of these effects are detrimental to opti-
mal control problems, since the optimiser is the control
input and non-unique or discontinuous state-to-input
maps can cause chattering of the actuators and lead to
instability of the closed-loop trajectories. Further, algo-
rithms based on direct exploration of the feasible space,
such as [1, 14] cannot be guaranteed to find a cover for
the set of feasible parameters, since degenerate regions
do not necessarily meet facet-to-facet [20]. As a result,
there may be regions of the parameter space for which
no optimal solution has been computed.

The problem of degeneracy has been addressed in [21] by
identifying regions of the parameter set that are degen-
erate and then solving a strictly convex multiparamet-
ric quadratic program (mpQP) over the set of optimal
solutions in each such region. It is proven in [21] that
the resulting polyhedral subdivision is non-overlapping
and unique, and that the optimiser is both unique and
continuous. However, this requires a secondary mpQP
solver and, if the regions are not to overlap, several po-
tentially expensive projection operations. It should be
noted that it cannot be determined a priori whether the
method [21] or that presented in this paper will result
in a smaller number of regions and either situation may
result depending on the specific problem.

In this paper, we introduce a new degeneracy handling
approach for mpLPs based on lexicographic perturba-
tion. Rather than solving the degenerate mpLP directly,
we solve a lexicographic, or symbolic, perturbation of
the given mpLP. We show that every optimal basis of the
perturbed problem is also an optimal basis of the origi-
nal and that the perturbed problem is guaranteed to be
non-degenerate. Further, the optimal solution of the per-
turbed mpLP is continuous and the generated regions
are both unique and their interiors are non-overlapping.

A new method of enumerating the solution based on [1,
14] is introduced that requires for each region the calcu-
lation of an LP of size equal to the degree of degeneracy
of the region, and therefore requires only a single sim-
ple computation to find a non-degenerate adjacent re-
gion. While the proposed approach is more efficient and
numerically robust than existing methods, it should be
noted that in the worst case the solution can require an
exponential number of regions, and therefore no method
can be sub-exponential in the worst case.

The paper begins with a brief background on the primal
lexicographically perturbed simplex method. We then
follow [11] to extend this approach to a simultaneous
perturbation of the primal and dual problems to stan-
dard and to multiparametric linear programming and

give the proofs to support the claims made of the per-
turbed problem above. We show how a modification of
the enumeration technique of [1,14] can be applied to a
lexicographically perturbed mpLP and prove it correct
and complete. Finally, examples are given that demon-
strate the pertinent properties of the algorithm as well
as its improved efficiency over existing approaches.

Notation

If A ∈ R
m×n and I ⊆ {1, . . . , n}, R ⊆ {1, . . . ,m}, then

A•I (AR•) is the matrix formed by the columns (rows)
of A indexed by I (R). If c ∈ R

n is a vector then cI

is the vector formed by the elements of c indexed by I.
The set of affine combinations of points in a set S ∈ R

n

is called the affine hull of S and is denoted aff (S). The
dimension dim(S) of a set S ⊆ R

n is the dimension of
aff (S). If dim(S) is equal to n, then the set is called
full–dimensional. The closure of a set S is denoted S+.
A polyhedron is the intersection of a finite number of
closed halfspaces. If P = {x |Ax ≤ b} is a polyhedron
and H =

{
x

∣∣ aT x ≤ b
}

is a halfspace such that P ⊆ H,
then P ∩ {

x
∣∣ aT x = b

}
is a face of P . 0 and dimP − 1

faces are called the vertices and facets respectively.

2 Preliminaries

Consider the following linear program:

min
x

{
cT x | Ax = b, x ≥ 0

}
, (1)

where the cost is defined by the vector c ∈ R
n, and the

optimiser x ∈ R
n is restricted to lie in the polyhedron

defined by the matrix A ∈ R
m×n and the vector b ∈ R

m.

Any set B ⊂ {1, . . . , n} such that |B| = m and
rankA•B = m is called a basis and we write N =
{1, . . . , n} \B for its complement and call xB and xN

the basic and non-basic variables respectively. Every
basis B defines a primal solution x to the linear equa-
tions in (1), which is given by restricting the non-basic
constraints to zero

xB = βb, xN = 0, (2)

where we will use the standard notation β � A−1
•B

throughout. A basis is called primal feasible if the
resulting primal solution also satisfies the inequality
constraints in (1), βb ≥ 0.

The reduced cost 1 is defined as c̄ � κc, where

κ•N � I•N , κ•B � I•B − AT βT (3)

1 Note that the reduced cost is often defined as cN −
AT

•NβT cB , since c̄B is clearly zero. We include the zero ele-
ments in the definition here so that the indices are preserved,
i.e. c̄i is related to the ith component xi, rather than to the
ith component of xN .

2



and I ∈ R
n×n is the identity matrix. The following

theorem provides the standard optimality condition for
LP (1).

Theorem 1 (Optimality condition) [5] If B is a fea-
sible basis of LP (1), and x and c̄ are the primal solution
and associated reduced cost, respectively, then x is an op-
timal solution if and only if c̄ ≥ 0.

The dual of LP (1) is:

max
λ

{
bT λ

∣∣ AT λ ≤ c
}

. (4)

Every basis B also defines a dual solution λ = βT cB ,
which is clearly feasible for (4) if and only if the reduced
cost c̄ is positive, since the reduced cost is the dual slack
variables. Therefore, we have the standard result that a
basis B defines an optimal solution of LP (1) if and only
if the primal and dual solutions are both feasible.

3 Unique Optimal Basis

In this section we will discuss a modification to the
standard primal simplex algorithm that will ensure that
there is a unique optimal basis. A similar approach is
outlined in [11] for the more general case of linear com-
plementarity programs. In this paper, we propose a spe-
cific procedure for the primal simplex algorithm, which
is particularly suited to parametric programming, as will
be seen in the following section.

We first review the general primal simplex algorithm.
The algorithm begins from any primal feasible basis B
and iterates the three steps of Algorithm 3, called a pivot,
until the dual becomes feasible. Note that we have left
out tests for optimality and unboundedness for brevity.

Algorithm 1 Primal Simplex Algorithm
1: Select an entering variable e such that c̄e < 0
2: Select a leaving variable by the ratio test,

l(e) = arg min
j∈B

{ (βb)j/(βA)j,e | (βA)j,e > 0}
3: Make the pivot B ← (B ∪ {e})\ {l(e)}

The goal of the algorithm is to bring the dual closer to
feasibility with each iteration, until c̄ ≥ 0, at which point
the current basis is optimal by Theorem 1. To this end,
Step 1 selects an entering variable e for which the dual is
negative and allows the associated non-basic variable xe

to increase from 0. As the non-basic variable xe increases,
the basic variables change as xB = β(b − A•exe). The
algorithm is required to maintain primal feasibility at
all times and therefore the leaving variable l(e) is chosen
to ensure β(b−A•exe) ≥ 0, which gives rise to the ratio
test.

A linear program is said to be primal degenerate if there
is more than one basis that describes the optimal pri-
mal solution and dual degenerate if more than one pri-
mal solution is optimal. We now introduce a standard

approach, called lexicographic perturbation, which re-
moves the need to consider degeneracy. This technique is
normally only applied to either the primal or to the dual
for the purpose of preventing a problem called cycling.
However, we here require a solution that is neither pri-
mal nor dual degenerate and so we follow [11] to extend
the standard technique.

We will first review the standard primal lexicographic
perturbation technique in the following section, and in
Section 3.2 show how to extend the simplex algorithm
to perturb both the primal and the dual simultaneously.

3.1 Lexicographic Perturbation

A vertex x is called primal degenerate if more than
n−m constraints are active at x 2 , where we recall that
A ∈ R

m×n. When a vertex is primal degenerate, there
is more than one feasible basis that can represent it. If
B is a primal-degenerate basis, then the basic variables
are xB = βb of which some xi are equal to zero [18].
Early methods of resolving primal degeneracy consisted
of adding a small random vector ε to the vector b, re-
sulting in a primal solution xB = β(b + ε), where all xi

would be non-zero and therefore the basis could not be
primal degenerate. Lexicographic perturbation is a more
elaborate version of this simple idea and was originally
proposed in [9].

Theorem 2 [18] There exists a positive number ε1 > 0,
such that whenever 0 < ε0 < ε1, the following perturbed
problem is primal non-degenerate:

min
x

{
cT x |Ax = b + ε, x ≥ 0

}
(5)

where εT �
[
ε0 ε20 . . . εm

0

]
Remark 3 A perturbation is considered “sufficiently
small” if it satisfies the conditions of Theorem 2. Note
that the implementation of a lexicographic perturbation
algorithm never requires the selection of a real-valued
perturbation. Only the effect of a sufficiently small per-
turbation is considered and therefore there are no numer-
ical issues or parameters to be chosen when perturbing
the problem.

The relationship between bases of {x |Ax = b, x ≥ 0}
and of {x |Ax = b + ε, x ≥ 0} is given by the following
theorem.

Theorem 4 [18] If B is a feasible basis for the perturbed
LP (5) when ε is sufficiently small, then B is a feasible
basis for the unperturbed LP (1).

2 Note that m is always assumed to be less than n, since
there would otherwise be at most one solution to the equation
Ax = b as the system of equations would be over-determined.
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Theorems 2 and 4 allow us to solve the non-primal de-
generate problem (5) rather than the original degener-
ate one. The remainder of this section discusses the me-
chanics of solving a linear program over the perturbed
polyhedron for a sufficiently small ε.

Consider now a primal degenerate basis B and recall that
its inverse is denoted β � A−1

•B . The associated primal
solution is then given by:

(xB)i = (βb)i + (βε)i

= βi•b + βi,1ε0 + βi,2ε
2
0 + · · · + βi,mεm

0 (6)

Clearly, (xB)i is primal feasible (i.e. positive) for all ar-
bitrarily small ε0 if and only if the first non-zero element
of the row vector [ βi•b βi• ] is positive. This condition
is referred to as lexico–positivity.

Definition 5 If γ = (γ1, . . . , γr) is a vector, then it is
said to be lexico–positive (or lex-positive) if γ 
= 0 and the
first nonzero component of γ is positive. Lexico positivity
will be denoted by the symbol γ � 0. Given two vectors,
v and u, we say that v � u if v − u � 0 and v � 0 if
−v � 0 or v = 0. Given a set of vectors {v1, . . . , vr}, the
lexicographical minimum, denoted lexmin is the element
vi such that vj � vi for all j 
= i.

Clearly, not all feasible bases will satisfy the positivity
condition of (6). The following definition introduces the
bases of interest.

Definition 6 A feasible basis B is called lexicograph-
ically feasible (lex-feasible) if every row of the matrix
[ βb β ] is lex-positive.

Solving the lexicographically perturbed linear pro-
gram (5) using a simplex approach is only slightly more
complex than solving the unperturbed one. We now
discuss a modification of the ratio test (Step 2 in Algo-
rithm 3) that uses lexicographic perturbation. If B is a
lex-feasible basis and e is the entering variable, then the
lexicographic ratio test is given by:

llex(e) � arg lexmin
j∈B

{
[ βb β ]j•/(βA)j,e

∣∣∣ (βA)j,e > 0
}

(7)

One can see that the lex-ratio test is derived in the same
way as for the original. Given an entering variable e, the
leaving variable llex(e) is chosen to ensure that the new
basis will still define a primal lex-feasible solution after
xe is allowed to increase: xB = βb − βA•exe + βε ≥ 0.
Note that the choice made by (7) must be unique since a
non-unique solution would exist if and only if two rows
of [ βb β ] were identical, and this clearly cannot happen
since β is invertible by definition.

Remark 7 Note that the lex-ratio test (7) is computed
without ever choosing a value for the variable ε, but only

the effect of a sufficiently small perturbation on the posi-
tivity of the solution xB. Therefore, the computation does
not involve small numbers, does not require the choice of
any parameters and is numerically robust.

The following important theorem allows us to simply
replace the ratio test of the primal simplex algorithm
(Step 2) with the lexicographic ratio test (7) in the sim-
plex algorithm and be sure that the optimal solution will
be found and that it will not be primal degenerate. We
will refer to a pivot made using the lexicographic ratio
test as a lex-pivot.

Theorem 8 [18] If B is a lex-feasible basis of
{x |Ax = b, x ≥ 0} and a lex-pivot is performed on B,
the resulting basis will be lex-feasible. For sufficiently
small ε, there is a one-to-one correspondence between the
vertices of {x |Ax = b + ε, x ≥ 0} and the lex-feasible
bases of {x |Ax = b, x ≥ 0}. Two vertices v1 and v2

are adjacent if and only if there is a lex-feasible basis B1

associated with v1 and a lex-feasible basis B2 associated
with v2 such that one can move from B1 to B2 (and vice
versa) via a single lexicographic pivot.

Remark 9 An initial feasible lex-positive basis can be
found by solving a modified LP using a lexicographic piv-
oting rule. Details can be found in [18].

3.2 Dual Degeneracy

In this section we further extend the standard lexico-
graphic perturbation discussed previously to a method
that simultaneously perturbs both the primal and the
dual. Consider the following linear program:

min
x

{
(c + δ)T x |Ax = b + ε, x ≥ 0

}
, (8)

where δ and ε are lexicographic perturbations.

The primal, LP (1) is called dual-degenerate if and only
if the dual (4) is primal degenerate [18]. If an LP is dual-
degenerate, then there are multiple primal solutions that
satisfy the optimality conditions. Therefore, if we lexi-
cographically perturb the dual problem making the dual
non-primal-degenerate, then the primal solution will be
unique. Given a basis B, the primal and dual solutions
of the perturbed problem LP (8) are given by:

xB = βb + βε λ = βT cB + βT δB

One can see that the primal solution x depends only
on ε and the dual λ only on δ. Therefore, we are free
to perturb both the primal and the dual simultaneously
and all theorems of the previous section will hold for
both [11].

The goal of the simplex algorithm can now be re-stated
as finding the unique optimal basis B that is both pri-
mal and dual lex-feasible, where we recall that a basis is
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optimal if and only if it is both primal and dual feasible.
We assume that an initial primal lex-feasible basis can
be found (see [18] for an appropriate procedure), and
that the simplex algorithm proceeds as before with the
lex-ratio test ensuring that all pivots maintain primal
lex-feasibility.

However, this lexicographic pivoting rule cannot be ap-
plied directly to the dual, as the intermediate bases
in the primal simplex algorithm are not dual feasible.
We instead change the selection of the entering variable
(Step 1), by requiring the reduced cost to be lex-non-
positive, rather than negative. In such a way, the cost
in the simplex algorithm decreases monotonically, and
therefore with every pivot the system will get closer to
dual lex-feasibility and optimality.

The reduced cost of LP (8) is c̄+ δ̄ = κ(c + δ), where κ is
defined in (3). Therefore the reduced cost is lex-positive
if and only if

[ κc κ ] � 0 (9)

The primal simplex algorithm for simultaneous primal
and dual lex-perturbation is given as follows:

Algorithm 2 Primal-Dual Lexicographically Perturbed
Primal Simplex Algorithm
1: Select an entering variable e such that [ κc κ ]e• � 0
2: Select leaving variable llex(e) via lex ratio test (7)
3: Make the pivot B ← (B ∪ {e})\ {llex(e)}

4 LexicographicallyPerturbed Parametric Pro-
gramming

We now turn to the main point of this paper and apply
lexicographic perturbation methods to parametric lin-
ear programming. It will be seen that uniqueness prop-
erties of the optimal basis for a lex-perturbed mpLP will
allow the development of fast enumeration algorithms
and will ensure continuity of the dual solution, which is
of vital importance to control problems since it prevents
chattering of the input that can lead to instability of the
closed-loop trajectories.

We aim to solve the following perturbed mpLP in the
parameter θ ∈ R

d:

J(θ) � min
x

{
(Eθ + c + δ)T x |Ax = b + ε, x ≥ 0

}
(10)

‘Solving’ the multiparametric linear program consists of
enumerating the optimal basis B for every value of the
parameter θ in some region Θ, where we assume that
there is a feasible solution for every θ ∈ Θ and that the
optimal solution is bounded.

Remark 10 As remarked in [8], a small amount of
pre-processing will ensure that the region Θ is full-
dimensional and that the projection of the dual con-
straints defines it: Θ =

{
θ

∣∣ ∃y, AT y ≤ c + Eθ
}
.

In this section we will see that the set of parameters
Θ can be sub-divided into full-dimensional polyhedral
regions in which the optimal basis does not change. The
mpLP can then be solved by enumerating all of these
region-defining bases. The remainder of this section will
discuss the properties of the solution to the perturbed
mpLP and the next will outline an efficient enumeration
technique.

Definition 11 Let B be a primal lex-feasible basis of
mpLP (10). The set RB is defined as all θ such that B is
the lex-optimal basis of mpLP (10).

Remark 12 The above definition matches that from [12]
and while it differs from that used in the more recent liter-
ature [3,8,15,21] both are equivalent for non-degenerate
problems, as is the case here due to lex perturbation.

Lemma 13 Let B be a primal lex-feasible basis of
mpLP (10). The set RB is given by

RB = {θ ∈ Θ | [ κ(c + Eθ) κ ] � 0} , (11)

where κ is defined in (3).

PROOF. The basis B is clearly primal lex-feasible for
all values of the parameter. Equation 9 gives the condi-
tion for dual lex-feasibility and therefore optimality. �

The following proposition shows that the sets RB are
non-intersecting and that the set of all such regions par-
titions the set Θ.

Proposition 14 If B1 and B2, B1 
= B2 are primal lex-
feasible bases of mpLP (10), then RB1 ∩ RB2 = ∅. If
θ ∈ Θ, then there exists a region R defined by (11) such
that θ ∈ R.

PROOF. For each value of θ, there is exactly one pri-
mal lex-feasible basis that satisfies condition (9). The
first result follows immediately. By assumption, the
mpLP (10) is bounded and feasible for every θ ∈ Θ
and therefore an optimal basis B exists for every θ and
hence an appropriate region RB that contains θ. �

The sets RB are not necessarily full-dimensional, nor is
the basis B that is optimal in the relative interior of RB

necessarily optimal on its boundary. For many applica-
tions, and in particular control applications where it is
the control input, it is desirable to have a continuous
dual solution. Therefore, we now turn to the dual solu-
tion and show that it is everywhere continuous.
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Lemma 15 Let B be a primal lex-feasible basis of
mpLP (10). The closure of the set RB is given by

R+
B = {θ ∈ Θ |κ(c + Eθ) ≥ 0} (12)

PROOF. From Lemma 13, the set RB is given by RB =
{θ |κ(c + Eθ) + κδ > 0}, where δ is a lexicographic per-
turbation. The result follows since δ can be taken arbi-
trarily small. �

Theorem 16 Let B1 and B2 be primal lex-feasible bases
for mpLP (10). If the dual optimisers are λ1(θ) and λ2(θ)
in RB1 and RB2 respectively, then λ1(θ) = λ2(θ) for all
θ ∈ R+

B1
∩ R+

B2
, where R+ denotes the closure of R.

PROOF. Consider the following primal-perturbed
parametric linear program:

min
x

{
(Eθ + c)T

x |Ax = b + ε, x ≥ 0
}

(13)

where ε is a lexicographic perturbation. Let B be a basis
that is optimal for mpLP (13) for some value of θ. The
basis B is clearly optimal in the closed region:

{θ |κ(Eθ + c) ≥ 0} (14)

From Lemma 15, we can see that (14) is also the clo-
sure of RB for the fully perturbed mpLP (10). It follows
that B1 and B2 are optimal for mpLP (13) in the region
R+

B1
∩ R+

B2
. The mpLP (13) is primally lex-perturbed,

and therefore not primal-degenerate by Theorem 2. The
dual solution is therefore everywhere unique.

The dual-solution of mpLP (13) and mpLP (10) are
equal for a given basis, when δ is taken arbitrarily small.
Since the dual solution of mpLP (13) is unique on the
boundary of the closure, we have the result λ1(θ) =
λ2(θ). �

We will now restrict our attention to the enumeration of
the bases B that correspond only to full-dimensional re-
gions RB , since we can derive the optimal dual-solution
on the boundaries from the above theorem. The next
section will show how to compute neighbouring full-
dimensional regions given an optimal basis that defines
a full-dimensional region.

4.1 Neighbourhood Problem

The neighbours of a given full-dimensional region RB

are defined as those bases B′ such that R+
B ∩ R+

B′ is a
facet of both R+

B and R+
B′ . Given a basis B and a facet

F of the region R+
B, we will show in this section how to

compute the optimal basis B′ of the adjacent region that
contains F .

The approach described in [1,14] computes the adjacent
region in three stages: first, a point θ◦ is computed in
the strict relative interior of the facet, second a small
vector in a direction normal to the facet is added to θ◦
and finally the mpLP is solved using an LP solver for
this value of the parameter. The approach described here
differs from this method in three ways. First, a point θ◦
is never explicitly calculated in the relative interior of
the facet, the computation of which can cause numerical
errors and adds to complexity. Second, by adding a small
vector normal to the facet to the point θ◦, it is possible to
‘step over’ and miss small regions. The method described
here poses an LP whose solution gives the optimal basis
for an arbitrarily small step outside the region, ensuring
no regions are missed. Finally, the optimal basis B for
the current region is primal lex-feasible for the LP whose
solution gives the adjacent region. A result of this is
that for non-degenerate regions, computing the adjacent
optimal basis requires a single simplex pivot, rather than
the solution of a complete high-dimensional LP.

Given a primal lex-feasible basis B that defines a full-
dimensional region RB , the facets of the closure of the
critical region RB are the (d−1)–dimensional faces of the
polyhedron R+

B = {θ |κ(Eθ + c) ≥ 0} and each facet
is either on the boundary of the region Θ, or is the in-
tersection of R+

B with the closure of some other region.
The neighbours of RB can then be determined in two
steps: First, determine the facet-defining inequalities of
R+

B and second, for each facet, compute the basis that
is optimal for a point just outside the facet.

All facets of the polyhedron R+
B can be written as R+

B ∩
{θ |κi•(c + Eθ) = 0} for some i [23]. The problem of de-
termining which inequalities define facets of R+

B comes
down to redundancy elimination, or the removal of all
redundant constraints from a polyhedron. A straightfor-
ward method of checking if the ith constraint of the re-
gion R+

B is redundant is to compute the optimal cost of
the following LP [10]:

J�
i � min

θ

{
κi•Eθ

∣∣∣∣∣ κj•(c + Eθ) ≥ 0, j 
= i

κi•(c + Eθ) ≥ −1

}
(15)

The ith constraint is then redundant if and only if the
optimal cost satisfies J�

i + κi•c ≤ 0.

The following theorem allows the computation of an ad-
jacent region with a single linear program, for which a
primal lex-feasible basis is already known.

Theorem 17 Let B be a primal lex-feasible basis of
mpLP (10), such that RB is full-dimensional and let
F � {θ |κf•(Eθ + c) = 0} ∩ R+

B be a facet of R+
B. Let

B′ be the optimal basis of the following LP:

min
x

{(
EET κT

f• + δ
)T

x

∣∣∣∣∣ Ax = b + ε, x ≥ 0,

xΓ = 0

}
(16)
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where ε and δ are lexicographic perturbations and

Δ � {i | ∃α ≥ 0, ακf• [ E c ] = κi• [ E c ]}
Γ � {1, . . . , n} \Δ

If the minimum exists then the optimal basis B′ defines
the adjacent critical region RB′ such that F = R+

B ∩R+
B′ ,

otherwise F is on the boundary of the region Θ.

PROOF. Let θ◦ be in the relative interior of the facet
F . The goal is to find the optimal basis B′ for mpLP (10)
at a point θ = θ◦ + γ(κf•E)T for an arbitrarily small
γ > 0 (i.e. θ lies ‘just outside’ the region RB). Two
conditions must be satisfied: First, B′ must be primal
feasible and second, the reduced cost must be positive.

Consider the reduced cost of LP (10) at θ:

κ′(Eθ◦ + c + EET κT
f•γ + δ

) ≥ 0, (17)

where κ′ is as defined in (3) for the basis B′. From Theo-
rem 16 we have that the dual-optimiser is unique on the
intersection R+

B ∩ R+
B′ . It follows that the unperturbed

reduced cost for θ◦ ∈ F for both B and B′ are equal, i.e.
κ(Eθ◦ + c) = κ′(Eθ◦ + c).

By the definition of Γ, κ′
Γ•(c + Eθ◦) > 0 and therefore

κ′
Γ•

(
Eθ◦ + c + EET κT

f•γ + δ
)

≥ 0 is satisfied for all
δ, γ sufficiently small. Since κ′

Δ•(c + Eθ◦) = 0 for all

θ◦ ∈ F , (17) is equivalent to κ′
Δ•

(
EET κT

f• + δ/γ
)
≥ 0.

Therefore the basis B′ satisfies the optimality conditions
of mpLP (10) at the point θ if and only if B′ is the
optimiser of LP (16). �

A standard simplex approach must first compute a fea-
sible basis using a so-called Phase I LP and then pro-
ceed to compute the optimal basis from there. However,
the known basis B is already primal lex-feasible for the
LP (16) and so Phase I can be avoided when using a pri-
mal simplex approach. The linear program is also gen-
erally of very small dimension, since Γ is expected to
contain most of the constraints. The following corollary
shows that if the basis is in fact non-degenerate, then
the adjacent basis B′ is given by a single simplex pivot,
since Γ contains all constraints but one and those in the
basis B.

Corollary 18 Let B be a non-degenerate primal lex-
feasible basis of mpLP (10) such that RB is full-
dimensional and let F � {θ |κf•(Eθ + c) = 0} ∩ R+

B be
a facet of R+

B. If the set Δ defined in Theorem 17 is the
set {f} ∪ B then if llex(f) is non-empty, the adjacent
basis is given by B′ = (B \ llex(f)) ∪ {f}, else F is on
the boundary of the region Θ.

PROOF. The result follows directly from the definition
of the simplex pivot (Section 3), by noting that there is
only one non-basic variable that is not constrained to
zero. �

The algorithm given in the next section for the enumera-
tion of all full-dimensional regions relies on the so-called
facet-to-facet property [20].

Definition 19 (Facet-to-Facet) Let P � {Pi | i ∈ I }
be a finite collection of full-dimensional polyhedra in R

s,
where int(Pi) ∩ int(Pj) = ∅ for all (i, j), i 
= j. We say
that the facet-to-facet property holds if F(i,j) � Pi ∩ Pj

is a facet of both Pi and Pj for all (s − 1)-dimensional
intersections F(i,j), i 
= j.

Corollary 20 If R is the set of all full-dimensional re-
gions R+

B such that B is a primal lex-feasible basis of
mpLP (10), then R satisfies the facet-to-facet property.

PROOF. LP (16) provides the adjacent basis given a
region R+

B and one of its facets F . Note that LP (16)
is not a function of any point θ◦ in the facet F . It fol-
lows that the adjacent optimal basis is the same for all
θ◦ ∈ F . Since LP (16) is lexicographically perturbed, the
solution is unique and this corollary follows directly. �

4.2 Region Enumeration

In this section we introduce a graph whose enumeration
provides the set of all optimal bases B that define a full-
dimensional region RB.

Definition 21 The solution graph G of the mpLP (10)
is defined as the pair G � (V,E). The nodes V are defined
as the primal lex-feasible bases B such that the region RB

is full-dimensional. The pair (B1, B2) ∈ V × V is in E if
and only if R+

B1
∩R+

B2
is a facet of both R+

B1
and of R+

B2
.

The graph clearly covers the set of all full-dimensional
regions, and therefore its enumeration will provide the
solution if it is connected.

Theorem 22 The graph G is connected.

PROOF. Consider any two points θ0, θ1 ∈ Θ and the
line θ = θ0τ + (1 − τ)θ1, τ ∈ [0, 1] that connects them.
Make the assumption that the line intersects only full-
dimensional regions and their facets. If it does not, then
an infinitely small perturbation of θ1 will ensure that it
does as there are a finite number of lower-dimensional
faces. Each facet that the line pierces clearly defines an
arc in G, and the entire sequence of arcs from θ0 to θ1 is
also contained in G by construction. Since θ0 and θ1 are
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taken arbitrarily and the region Θ is convex, the graph
must be connected. �

All of the tools are now in place to enumerate the bases
B that define full-dimensional regions RB. LP (15)
determines which inequalities of a given region adjoin
neighbours, and Theorem 17 computes those neigh-
bours. Since the graph is connected, any standard enu-
meration technique, such as depth–first, will return all
of the desired bases.

5 Finite Horizon Optimal Control Examples

The primary motivation for mpLPs in control is the cal-
culation of so–called closed–form or explicit finite hori-
zon optimal control laws. The goal is to control the fol-
lowing linear time invariant (LTI) system:

ξ+ = Aξ + Bu,

where ξ ∈ R
n is the state, ξ+ is the successor state and

u ∈ R
m is the input. A standard finite horizon controller

can be written as the solution to the following optimisa-
tion problem:

minimise
u0,...,uN−1

‖QF ξN‖p +
N−1∑
i=0

‖Rui‖p + ‖Qξi‖p

subject to ξ0 = ξ
ξi+1 = Aξi + Bui,

(ξi+1, ui) ∈ Xi+1 × Ui, i = 0, .., N − 1
(18)

where ξi and ui are future predicted states and inputs
respectively, which are constrained to be in the sets X
and U , with the state at the end of the horizon N re-
quired to lie in the terminal set XF . If the norm p is ei-
ther the 1−, or ∞−norm and the constraints X and U
are polyhedra, then problem (18) can be written as an
mpLP of the form considered in this paper, where the
parameter is the current state ξ. See [3, 6] for details.

Degenerate Example If the mpLP is not degener-
ate for any value of the parameter, then the approach
proposed in this paper will return the same result as all
other current methods, as from Theorem 4 the pertur-
bation has no effect in the non-degenerate case and we
therefore here focus on a degenerate example. Consider
the commonly used example of the discrete-time double
integrator [7, 8, 13,15]:

ξ+ =
[

1 1
0 1

]
ξ +

[
1

0.5

]
u,

with the input and state constraints |u| ≤ 1, ‖ξ‖∞ ≤ 5
and a horizon N of length 5.

The problem (18) is made very degenerate by setting
the weights R, Q and QF to zero. This situation arises
naturally when variables are defined using zone objec-
tives [16], such as in a surge tank where the level is unim-
portant so long as it doesn’t under/over–flow.

The solution using the proposed lexicographic perturba-
tion method is shown in Figure 1. Clearly, the regions
RB join facet-to-facet, do not overlap and the input is
continuous.
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x
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x 2

(a) Regions RB (b) Control Input

Fig. 1. Solution for degenerate Example

Random 3D System In this example we will investi-
gate the performance difference between currently avail-
able mpLP codes and the efficiency benefit given by The-
orem 17. Consider the following randomly generated sys-
tem:

ξ+ =

[−0.355 0.452 −0.181
0.452 −0.633 −0.208

−0.181 −0.208 −0.083

]
ξ +

⎡
⎢⎣−1.007 −0.999

1.598 0
1.055 1.426

⎤
⎥⎦ u

with a prediction horizon N = 5 and the constraints
‖u‖∞ ≤ 1, ‖ξ‖∞ ≤ 5 on the input and state respectively.
The cost is the minimisation of the∞−norm of the states
and inputs at each point in time and the matrices Q and
R are taken as the identity.

The efficiency of the three leading algorithms, imple-
mented in MPT [15], the Hybrid Toolbox [2] and dis-
cussed in [8] were compared to the proposed lexico-
graphic perturbation method. To ensure a fair compar-
ison, the same LP code [17] was used in all four cases
and the number of simplex pivots that each algorithm
took were counted. The resulting data is presented in
Table 1. The ‘Pivots’ columns show the number of low–
dimensional simplex pivots for redundancy elimination
and high–dimensional pivots for adjacency calculation
that were taken. The improvement due to Theorem 17
can be seen in the small number of high–dimensional
pivots required to compute adjacent regions.
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Method 3D Pivots 20D Pivots

Lex mpLP 134, 839 10, 500

MPT [15] 161, 702 70, 167

Hybrid Toolbox [2] 319, 208 147, 954

[8] 1, 392, 740 36, 143
Table 1
Comparison of mpLP Methods
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