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In the nonlinear model predictive control (NMPC) field, it is well-known that the multistep control approach
is superior to the single-step approach when examining high-order nonlinear systems. In the multistep control
approach, however, the online minimization of a 2-norm square objective function over a control horizon of
length M always requires solving a set of complex polynomial equations, for which no definite solution
exists so far. Moreover, the complex nature of the receding horizon optimization also causes additional problems
to its closed-loop stability analysis. With these two serious challenges in mind, using a Volterra-Laguerre
model-based NMPC for discussion, we propose a general technique to extend the control horizon with the
assistance of Groebner basis, which transforms the set of complex polynomial equations to a much simpler
form. We prove the closed-loop stability of the algorithm in the sense that the input and output series are
both mean-square-bounded. Finally, the efficiency of this improved algorithm is examined on an industrial
constant-pressure water supply system. Compared to the conventional NMPC schemes, the proposed method
with the control horizon extension has shown a great potential to control a wide range of nonlinear dynamic
systems.

1. Introduction

Model predictive control (MPC) is an attractive optimization
strategy, particularly for nonlinear processes in real-
world applications. Conventional MPC schemes have enjoyed
widespread acceptance and success as an effective technique
for addressing control problems, especially in the chemical/
petrochemical industries.1 Recently, research has focused on
the nonlinear MPC (NMPC) problem; however, the derivation
of these models can be very time-consuming, especially if
the process is not well-understood. Furthermore, the NMPC
schemes that use more-realistic nonlinear process descriptions
always sacrifice the simplicity associated with linear tech-
niques, to achieve the improved performance.2 The direct
use of nonlinear models often leads to a high-order non-
linear optimization problem, which has not been easy to solve
so far.2

To enhance the efficiency of NMPC, more and more
empirical nonlinear models are used,3 such as the nonlinear auto-
regressive moving average with exogenous inputs (NARMAX)
model,3 the nonlinear auto-regressive with exogenous inputs
(NARX) model,3 the Volterra series model,3,4 and the Wiener
model,3,4 among others. Because these discrete-time models
are of high-order, a multistep input series (a multistep con-
trol horizon) rather than a single-step input is required to
predict system output over certain future steps. The extension
of receding techniques to the multistep control situation will
be very helpful to handle high-order nonlinearities. However,
this extension is not easy to achieve, for the following two
reasons.

(1) The online optimization of the object function always
leads to a set of complex polynomial equations, including
coupling of the inputs at different steps,1,2,7for which no definite
solution is available so far.

(2) Even if this control law is available, another serious
challenge still remains on the closed-loop stability analysis,
which involves the receding horizon optimization nature of
NMPC.8

To meet these two challenges, one of the most frequently
studied casessthe Volterra series model-based NMPC al-
gorithm6swill be investigated as an example. The Volterra
series model4,5 is a nonlinear extension of the linear impulse
response model, which is capable of capturing the nonlinear
dynamics with fading memory4 (i.e., the effects of past inputs
on the output are negligible after some finite time). In our study,
each Volterra kernel is expanded by a complete orthonormal
series of functions called the Laguerre functional series,9-11

which is chosen based on the effective synthesis of causal
operators. Although many orthornormal sets, such as Kautz
series10,11and Tschebyscheff series,9 are also available, a proper
Laguerre filter pole will result in fewer modeling parameters,12,13

if the higher-order Volterra kernels can be neglected.
During the past few years, Laguerre filters have been

successfully applied to design linear adaptive controllers,14-19

which has caused interest of modeling stable linear plants
using Laguerre filters.20-22 Compared with the FIR (finite
impulse) or the ARMA (autoregressive moving average)
model, the Laguerre model is good at approximating systems
with varying time delay with the following advantages:6,14,15,17

(i) tolerance to unmodeled dynamics and reduced sensitivity
of the estimated parameters, (ii) orthogonality of the regression
vector under white excitation, (iii) no assumption is re-
quired for model order and process delay, and (iv) good low
frequency match exists between the estimated model and the
real plant.
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The Volterra-Laguerre model was first proposed and ana-
lyzed by Schetzen5 in 1980. Boyd and Chua3,4 proved, in 1984,
its superiority, in comparison with other empirical models, such
as the NARMAX model and the NARX model, when capturing
the dynamics of fading memory nonlinear systems (FMNSs),
which are defined as systems whose dependence on past inputs
decreases rapidly enough with time.3 Thereafter, more and more
researchers recognized the potential of the Volterra-Laguerre
model in nonlinear process modeling and control. The most
typical example is Dumont’s NMPC6 with the single-step control
horizon, which was successfully applied to a wood chip refiner
motor load control system for mechanical pulping. However,
because of the complexity of receding horizon optimization
nature, the two general theoretical issues of NMPC, namely (a)
control horizon extension (and, in particular, finding the solution
of complex polynomials of equations) and (b) closed-loop
stability analysis still remain unsolved,6,7,23-26 which greatly
limits its further application.

Bearing these problems in mind, this paper presents a general
method to extend the control horizon of NMPC algorithms with
guaranteed stability. The main contributions of this paper are
summarized as follows:

(1) The traditional single-step control NMPC algorithm is
improved and changed to a multistep one. This is done using
an important concept from the algebraic geometricsnamely, a
Groebner basis27,28swhich allows the mentioned sets of complex
polynomial equations to be transformed to simpler forms with
easy solution.

(2) Based on a lemma proposed by Goodwin,29,30the stability
of this closed-loop system is proved in the sense that the input
and output series are both mean-square-bounded.

Hence, this novel method can be expected to take full
advantage of NMPC technology and to be capable of examining
more-complex nonlinear dynamics. The developed algorithm
will be demonstrated with promising results on a real water
supply system.

The remainder of the paper is organized as follows. In section
2, the Volterra-Laguerre Model is first introduced. In section
3, two main problems are described, together with the conven-
tional single-step control NMPC algorithm. In section 4, the
improved multistep control NMPC algorithm then is proposed,
together with the theoretical analysis of the closed-loop stability.
Experiments are performed in section 5. Finally, conclusions
are given in section 6.

2. Volterra-Laguerre Modeling for Processes

If the dependencies of the process dynamics on past inputs
decrease rapidly enough with time, the input-output relationship
of this nonlinear process can be approximated by Volterra series2

as

where the functionshn(τ1,...,τn) are the Volterra kernels that
represent the nonlinear dynamics. This type of system is called
FMNS,2 which is well-behaved in the sense that it will not
exhibit multiple steady states or other related phenomena, such
as chaotic responses. Fortunately, most industrial processes (pH
neutralization processes, continuously stirred tank reactor
(CSTR) processes, distillation processes, heat exchange pro-
cesses, etc.) belong to FMNS systems.20 In practice, a Volterra
series should be truncated at a finite valueNv.1

We denote theith-order Laguerre time function byφi(t) and
the ith-order Laguerre filter, which is shown in the upper part
of Figure 1, by

where the expression ofφi(t) is given in refs 9 and 10. Because
{φi} forms a complete orthonormal set in the spaceL2(R+), we
can write, under the assumption that the Volterra kernels5 are
stable,

whereci, cnk, ... are constant coefficients.5 The expansion error
goes to zero asN andNv approach infinity; here,N is defined
as the Laguerre series truncation length. Using the orthonormal
property of the Laguerre function, and substituting eqs 2 and 3
into eq 1, the input-output model becomes5

Because of the fact that Volterra kernels are symmetric, we
define

Here, the symbol ‘*’ denotes “transpose” andD is a symmetric
matrix.

Assume the truncation length of the Volterra series isNv )
2; the Volterra-Laguerre model then becomes6,24,25

Based on this, we similarly consider the discrete-time version11,17

of eqs 6 and 7:

Figure 1. Volterra-Laguerre nonlinear model in the discrete-time domain.

ym(t) ) h0(t) + ∑
n ) 1

∞ ∫ ‚‚‚ ∫ hn(τ1,...,τn) ∏
i)1

n

u(t - τi) dτi (1)

l i(t) ) ∫0

∞
φi(τ)u(t - τ) dτ (2)

h1(τ1) ) ∑
i)1

N

ciφi(τ1)

h2(τ1,τ2) ) ∑
n)1

N

∑
k)1

N

cnkφn(τ1)φk(τ2)

l (3)

ym(t) ) c0(t) + ∑
i)1

N

cili(t) + ∑
n)1

N

∑
k)1

N

cnmln(t)lk(t) + ‚‚‚ (4)

L(t) ) [l1(t),...,lN(t)]T

C ) [c1,...,cN]T

D ) [c11 ‚‚‚ c1N
•‚• l

* cNN
] (5)

L̇(t) ) AcL(t) + Bcu(t) (6)

ym(t) ) cc0 + Cc
TL(t) + LT(t)DcL(t) (7)

9180 Ind. Eng. Chem. Res., Vol. 46, No. 26, 2007



with

wherep is the Laguerre filter pole (see the upper portion of
Figure 1). The detailed model structure of Figure 1 can be
explained as follows: the upper portion (the Lagurrre filters)
calculates the state vectorL(t); accordingly, the zero-order kernel
(1), the first-order kernel ([l1(t),‚‚‚,lN(t)]), and the second-order
kernel [l12(t),l1(t),l2(t),..., l22(t),..., lN2(t)] are computed within
the lower portion of Figure 1. Finally, combining these kernels
and their corresponding coefficientsc0,C andD yields the model
output ym(t). Generally, the initial valuesL(0) can be pre-
optimized as17

Here, a finite number of Laguerre filters are used, indicating
that the true plant is stable and observable in finite time.
Equations 8-10 are an approximation in input-output form of
the Volterra functional series representation for a nonlinear
dynamic system.

Fortunately, the model parametersc0, C, andD are in a linear
regressive form, which can be easily estimated by least-squares
estimation (LSE)31 as follows:

with

According to eq 8,Φ(t) can be calculated withu(t) at each
sampling period, and the coefficientsθ can be identified by
recursive LSE with a forgetting factorλ.

Remark 1: Each stable Volterra kernel in the spaceL2(R+)
can be accurately approximated by a more-general type of model
called an orthonormal functional series (OFS).9-11 Pulse series,
Laguerre series, and Kautz series are three typical OFSs, with
orders of 0, 1, and 2, respectively. In addition, Heuberger et

al.5 proposed a method to generate high-order OFSs. With the
increase in order, the OFS model can handle more-complex
dynamics.

3. Problem Description

Generally speaking, to predict the system outputy(t), an input
series rather than a single-step input is required in MPC. Thus,
it seems obvious that the multistep control method is superior
to the single-step approach.

First, a M-step control and aP-step prediction NMPC are
designed, based on the Volterra-Laguerre model (eqs 8 and
9). The definitions of control and prediction horizons and the
general derivation procedure of MPC can be reviewed in
Camacho and Bordons.1 The future stateL(t + i|t)(i ) 1, ...,P)
in eq 14 can be predicted by combining the current stateL(t)
with the past control inputsu(t - 1) and the future changes
{∆u(t + j|t),j ) 0, ...,M - 1},

assuming that the input changes∆u(t + j|t) ) 0 for j g M, and
Ah i ) ∑j)0

i-1 A j.
If Nv ) 2, the model prediction (eq 14) then can be rewritten

as

with

The associated quadratic objective function is

where the rectified model output prediction vector isŶm(t + 1)

L(t + 1) ) AL(t) + Bu(t) (8)

ym(t) ) c0 + CTL(t) + LT(t)DL(t) (9)

A )[p 0 0 ‚‚‚ 0
â p 0 ‚‚‚ 0
-pâ â p ‚‚‚ 0

p2â -pâ â ‚‚‚ 0
l
(-1)N -2pN-2â (-1)N-3pN-3â ‚‚‚ â p

] (10a)

B ) [â1/2

(-p)â1/2

l
(-p)N-1â1/2] (10b)

â ) x1 - p2 (10c)

L(0) ) x1 - p2 [1, -p, p2, ..., (-1)N-1pN-1]T

y(t) ) θTΦ(t) (11)

θ ) [c0,c1,‚‚‚,cN,c11,‚‚‚,c1N,c21,‚‚‚,c2N,‚‚‚,cNN] (12)

Φ(t) ) [1,l1(t),‚‚‚,lN(t),l1
2(t),l1(t)l2(t),‚‚‚,

l1(t)lN(t),l2(t)l1(t),‚‚‚,l2(t)lN(t),‚‚‚,lN
2(t)] (13)

L(t + i|t) ) A iL(t) + Ah iBu(t - 1) + ∑
j)0

i-1

Ah i-jB∆u(t + j|t)
(14)

L (t + 1|t) ) [A Ah 1B

A2 A2B
··· ···
AP Ah P-1B

]
PN×(N+1)

‚ [LT(t) u(t - 1)]T +

[Ah 1B 0 · · · 0
Ah 2B Ah 1B ··· ···
··· ··· ··· 0
Ah MB Ah M-1B · · · Ah 1B
··· ··· ···
Ah PB Ah P-1B · · · Ah P-M+1B

]
PN×M

∆U(t|t) (15)

Ym(t + 1|t) ) CP
TL (t + 1|t) + LT(t + 1|t)DPL (t + 1|t)

(16a)

L (t + 1|t) ) [LT(t + 1|t),...,LT(t + P|t)]T (16b)

∆U(t|t) ) [∆u(t|t),...,∆u(t + M - 1|t)]T (16c)

Ym(t + 1|t) ) [ym(t + 1|t),...,ym(t + P|t)]T (16d)

CP
T ) diag(CT,...,CT)P×PN (16e)

DP ) diag(D,...,D)PN×PN (16f)

min
∆U(t|t)

J(∆U(t|t)) ) ||Yr(t + 1) - Ŷm(t + 1|t)||Q2 +

||∆U(t|t)||R2 (17)
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) Ym(t + 1) + e(t), with modeling errore(t) ) y(t) - ym(t), Ω
)[1, ...,1]P×1

T ; the softening reference vector is

with yr(t + i) ) Riy(t) + (1 - Ri)ø(t) (for i ) 1, ...,P), R is the
softening parameter,ø(t) is the set point, andQ andR are both
positive-definite symmetric weighting matrices, which are
always set asQ ) I , R ) r ‚ I for convenience. The first and
second terms of eq 17 intend to penalize the error between the
set point and output and penalize the control efforts, respectively.

The ∆U(t|t) minimizing the objective function (eq 17) can
be obtained by solving∂J/∂∆U(t|t) ) 0. Because, at each step,
J in eq 17 is a quadratic polynomial of the control variables
∆u(t|t), ..., ∆u(t + M - 1|t), it is obvious that∂J/∂∆U(t|t) ) 0
leads to a set ofM cubic equations

with 0 e i1 + i2 + ‚‚‚ + iM e 3,ij ∈Ν+∪{0}(j ) 1, ...,M), and
the rational coefficientssi1,i2,‚‚‚,iM

(j) (j ) 1, ..., M) are determined
by u(t - 1), L(t), e(t), r andYr(t + 1). Unfortunately, there is
so far no definite solution for the polynomial set (18), and the
underlying difficulty lies on the crossing terms of different steps’
control signals.

In summary, there are two unsolved problems related to the
NPMC:

(1) Problem 1: Solution of Polynomial Equations. To do so,
obtain the multistep control law∆u(t|t) from eq 18.

(2) Problem 2: Stability of the control law. Prove the closed-
loop stability of the above control law.

Remark 2:
(1) Actually, problems 1 and 2 are the common problems

for most of the empirical model-based NMPCs.
(2) If M ) 1, then problem 1 becomes a simpler single-step

control:

The solution and application of this case study are presented
in detail in the work of Dumont and Fu6 and Parker and Doyle.25

However, this single-step control method cannot handle high-
order nonlinear dynamics, because the control horizon is only
one step. Moreover, because of the complex nature of receding
horizon optimization, the closed-loop stability analysis of this
algorithm has not been given yet.

4. Controller Development and Theoretical Analysis

4.1. Multistep Control NMPC Using a Groebner Basis
(Problem 1). An important concept from algebraic geometry,
called the Groebner basis, can be applied to solve the complex

set of eq 18 in a straightforward manner. The detailed description
of the Groebner basis and the relevant contents are given in
Appendix A and refs 27 and 28. Actually,fi(1 e i e M) in eq
18 forms an ideal on a polynomial ring, whose definition is
also shown in Appendix A. The Buchberger algorithm27 then
could be applied to generate the Groebner bases, which
transforms the complex equation set (eq 18) into simpler basis
polynomials that represent the solutions for the manipulated
variable profile.

In this scheme, the lexicographic order (which is a type of
relative importance order; see Appendix A) of{∆u(t|t), ..., ∆u(t
+ M - 1|t)} is generally set as∆u(t + M - 1|t) “is more
important than”∆u(t + M - 2|t) “is more important than”...
“ is more important than”∆u(t|t). A set of M Groebner basis
polynomials, including two sets of equations, then is generated
as follows:

(1) An ηth-order polynomial equation in only∆u(t|t), i.e.,

(2) (M - 1) polynomials equations in

where Ri(i ) 0, 1, ..., η) are determined by the coefficients
si1,i2,‚‚‚,iM

(1) , ..., si1,i2,‚‚‚,iM
(M) of eq 18.

Thus, eq 20 can be used to get∆u(t|t), which would lead to
its corresponding prediction (M - 1) steps prediction of input
series, i.e.,{∆u(t + 1|t), ..., ∆u(t + M - 1|t)}, according to eq
21. To ensure the existence of a real root,M should be adjusted
to makeη an odd number. In this way, the structure of Groebner
bases is formed to provide the straightforward solution of
problem 1. In practical applications, one should not be intimi-
dated by the complex forms of eq 18 and its corresponding
Groebner basis (eqs 20 and 21), because this solution can be
easily implemented with the existing software packages (e.g.,
GroebnerBasis ( )in Mathematica). Moreover, because eq 20
is dependent only on∆u(t|t), the∆u(t|t) can be obtained using
a function such asroots( ) in MATLAB. The only real roots of
eq 20 are evaluated and substituted into eq 21. These equations
calculate candidates∆u(t + 1|t), ...,∆u(t + M - 1|t) for each
∆u(t|t). Finally, only∆u(t|t) that produces the minimum object
function is implemented in the system. This process is repeated
at each sampling period. The detailed procedure of online
calculating is shown in Figure 2: first,∂J/∂∆U(t|t) ) 0 is used
to compute theM cubic equations (eqs 18), and then the
Groebner basis technique is applied to get the polynomial
described in eq 20; finally, eq 20 is solved to obtain the control
law ∆u(t|t).

On the other hand, input magnitude constraints can be also
included in the current algorithm. The optimal solution to the
constrained problem is equivalent to finding the global minimum
within the constrained region. If the minimum does not lie within
the constrained region, then the objective function is evaluated
at each constraint, and the manipulated variable move corre-
sponding to the minimum objective function is implemented.
Compared to some widespread nonlinear programming-based
MPC algorithms using the objective function (eq 17), the
advantage of the current method is obvious, because gradient
descent-based nonlinear programming solvers can only converge
to a local minimum, whereas the current analytic solution
controller guarantees convergence to the global minimum
objective function value. More details can be seen in the work
by Parker.7

∑
i)0

η

Ri∆ui(t|t) ) 0 (for Rη * 0) (20)

∆u(t + 1|t),‚‚‚,∆u(t + M - 1|t) (21)

Yr(t + 1) } [yr(t + 1), ...,yr(t + P)]T

polynomial equation 1:

f1 ) ∑
i1)0

3

‚‚‚ ∑
iM)0

3

si1i2‚‚‚iM
(1) ∆ui1(t|t)∆ui2(t + 1|t) ‚‚‚

∆uiM(t + M - 1|t) ) 0

l l

polynomial equationM:

fM ) ∑
i1)0

3

‚‚‚ ∑
iM)0

3

si1i2‚‚‚iM
(M) ∆ui1(t|t)∆ui2(t + 1|t) ‚‚‚

∆uiM(t + M - 1|t) ) 0 (18)

∂J
∂∆u(t|t) ) s3(t)∆u3(t|t) + s2(t)∆u2(t|t) +

s1(t)∆u(t|t) + s0(t) (19)
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Remark 3:
(1) In contrast to Parker,7 the advantages of this work are

given as follows: (a) The control horizon is extended to
multisteps, rather than just two steps ahead, which makes the
method more flexible. Moreover, this method can be even
generalized to more-general open-loop stable NARMAX model-
based NMPCs.1-3 (b) A theorem is proposed to guarantee the
closed-loop stability of this method, and parameters can be
adjusted according to this theorem.

(2) The multivariable problem is a straightforward extension
of the current formulation, although analytic solution of the
vector objective function (eq 17) requires further work.

4.2. Closed-Loop Stability Analysis (Problem 2).For the
proposed multistep control algorithm (eq 20), the theoretical
issues regarding problem 2 will be discussed here.

Lemma 1.29,30 For a discrete-time system

whereµ and P1 are positive integers;{∆u(t)} and {y(t)} are
incremental input series and output series of the system,
respectively;H(z-1), D(z-1), and Ti(z-1) (for i ) 1, ..., µ) are
polynomials inz-1; {ω(t)} is stochastic white noise defined in
the probability space (Ω,F,P); {Ft} is the subσ-algebra series
of F; andFt contains all information of this system up to time
t. In addition,{ω(t)} satisfies the following three assumptions:

where the superscript “as” denotes “asymptotically”. If all the
zeros ofT(z-1) are inside the unit circle of the complex plane
of the Z-domain, then

with 0 < K1 < ∞ and 0< K2 < ∞.
9

Based on the Volterra-Laguerre model (eqs 8-10), it can
be obtained that the closed-loop system determined by the

algorithm (eq 19 or 20) has a similar form of eq 22, as shown
below (a detailed derivation is given in Appendix B):

For the traditional single-step algorithm (eq 18),µ ) 2; for our
multistep control law (eq 20),µ ) η. Note that assumptions
A1-A3 determine the stochastic characteristics of the external
noise, whereas Lemma 1 will no longer be valid for colored or
unbounded noise.

According to the general form (eq 27) of the closed-loop
system, combined with Lemma 1, the stability theorem of our
algorithm can be given as follows.

Theorem 1. If the closed-loop system determined by the
control law (eq 19 or 20) satisfies assumptions A4-A6, then it
can be concluded that the system is closed-loop stable in the
sense that the input series{ui(t)}(i ) 1, ...,µ) and output series
{y(t)} are both mean-square bounded.

(A4) the external stochastic white noiseω(t) satisfies as-
sumptions A1, A2, and A3, and the modeling errore(t) solely
containsω(t), i.e.,

(A5) the initial control lawu(0) is bounded, and
(A6) there exist parametersM, P, N, r, p such that all of the

zeros of the polynomialT(z-1) in eq 27 are inside the unit circle
of the Z-domain complex plane.

Proof: From Lemma 1, considering that the referenceyr(t
+ i), (i ) 1,‚‚‚,P) are bounded, we have that the series{∆ui(t)}(i
) 1, ...,µ) is mean-square bounded if assumption A6 is satisfied.
Furthermore, from assumption A5, it can be obtained that
{ui(t)},(i ) 1, ...,µ) are also mean-square bounded. On the other
hand, in accordance with assumption A4, and taking into
consideration of Appendix B, we have

whereNε is a sufficiently large positive integer (see Appendix
B for details). Then, from assumption A4, combined with the
fact that bothNε andNV are finite positive integers, it can be

Figure 2. Multistep control algorithm structure.

T(z-1)∆uµ(t) ) H(z-1)y(t + P1) +

∑
i)1

µ-1

Ti(z
-1)∆ui(t) + D(z-1)ω(t) (22)

(A1) E{ω(t)/Ft-1}as
) 0 (E{‚} denotes the

expectation value) (23)

(A2) E{ω2(t)/Ft-1}as
) F2(0 < F < ∞) (24)

(A3) lim
Nf∞

sup
1

N
∑
t)1

N

ω2(t)as
<∞ (25)

1

N
∑
k)1

N

(∆uµ(t))2 as
e

K1

N
∑
k)1

N

y2(t + d) + K2 (26)

T(z-1)∆uµ(t) ) H0(z
-1)yr(t + P) +

∑
i)1

µ-1

Ti(z
-1)∆ui(t) + D0(z

-1)ω(t) (27)

y(t) - ym(t) ) ω(t) (28)

y(t) ) c0 + CT ∑
i)0

Nε

Aiz-i-1Bu(t) +

(∑
i)0

Nε

Aiz-i-1B)TD(∑
i)0

Nε

Aiz-i-1B)u2(t) + ω(t) (29)
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concluded that the output series{y(t)} are also mean-square
bounded.

9
Remark 4: The control law (eq 27) is a closed-loop

controller, because the modeling errore(t) ) y(t) - ym(t) is fed
back to compute the control law. Moreover, althoughω(t) is
directly related toy(t), the conditions of Theorem 1 can still be
satisfied. Let us explain as follows.

As shown in Figure 2, the system output is expressed as

whereyj(t) is the nominal output andω(t) is the external noise.
On the other hand, generally speaking, the modeling errore(t)
contains unmodeled dynamicsê(t) and external noiseω(t), i.e.,

Here,ê(t) denotes the difference betweenyj(t) and model output
ym(t), i.e.,

Actually, in Theorem 1, it is assumed that the Volterra-
Lageurre model matches the nominal model of the plant, i.e.,

Thus,e(t) ) ω(t). This assumption is reasonable, because the
Laguerre-Volterra model has been proved to have the capability
of accurately approximating arbitrary FMNSs with sufficiently
large N and Nv (see refs 4 and 5). In industrial engineering
applications, this assumption can be interpreted as “in contrast
to |ω(t)|, |ê(t)| is negligible”. Consequently, external noiseω-
(t) is directly related toy(t) as

Meanwhile, the conditions of Theorem 1 can be satisfied.
Remark 5: Let us give the interpretations of assumptions

A4-A6. With the assistance of assumption A4, Problem 2 is
naturally transformed to the framework of Lemma 1. However,
if the modeling errore(t) contains components other than
external white noiseω(t), the problem will become more
complicated. Because∆u(t) is proven to be bounded at each
step, assumption A5 guarantees the mean-square boundedness
of u(t). Moreover, according to Lemma 1, assumption A6
ensures the mean-square boundedness ofy(t).

In real applications, to decrease the computational complexity,
one can first set the parametersN, M, andP as integers in some
limited ranges, such as [5,10], [2,15], and [M,15], respectively,
and then set the value ofp around the optimal value gained by
Campello and co-workers.12,13Afterwards, tune parameterr until
one finds a suitable parameter combination of (p,N,M,P,r) that
satisfies assumption A6. Note that, in the process of adjusting
r, one can still slightly tunep around the optimal value to
accelerate the parameter setting procedure. In contrast to the
traditional single-step algorithm (eq 19), the control horizon
parameterM of eq 20 can be designed to enlarge the stable
region according to Theorem 1. Consequently, our improved
algorithms (eq 20) have the potential to handle more-complex
nonlinear dynamics, which will also be validated by the case
studies in section 5.

5. Case Study

5.1. Constant-Pressure Water Supply Control System.The
two NMPC algorithms to be examined are stated as follows:

(1) CNMPC (conventional NMPC),6 which is based on the
NAARX model (which is a special case of the NARMAX
models) defined as

The functions{f(‚)} and{g(‚)} are scalar nonlinearities;l and
n are input and output memories, respectively, andω(t) is the

y(t) ) yj(t) + ω(t)

e(t) ) ê(t) + ω(t)

ê(t) ) yj(t) - ym(t)

ê(t) ) yj(t) - ym(t) ) 0

y(t) ) yj(t) + ω(t)

Figure 3. Constant pressure water supply system.

Figure 4. Signal and water flow chart.

Figure 5. Characteristics curves of Grundfos CH2-typed centrifugal pump.

ym(t) ) ∑
i)1

l

fi(y(t - i)) + ∑
i)1

n

gi(u(t - i)) + ω(t) (30)
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external white noise. This approach uses nonlinear programming
to handle input magnitude constraints.

(2) LNMPC, which is the multistep Volterra-Laguerre
model-based NMPC (see eq 20).

In this section, statistical experiments will be performed on
a practical industrial system to further validate the feasibility
and superiority of LNMPC.

The constant-pressure water supply system is shown in Figure
3. The executer is the Siemens MM440-type frequency con-
verter, and the controlled plant is the Grundfos CHI-2 type
centrifugal pump. The signal and water flowchart are shown in
Figure 4. The pressure sensor transforms the output water
pressure to a standard voltage signal (1-5 V). Through A/D
transmission, the signal is sent to the serial port of a personal
computer (PC). The controller in the PC calculates the control
signal and sends it in the standard current signal (4-20 mA),
through D/A transmission, to the Siemens frequency converter
to control the rotation frequency of the Grundfos centrifugal
pump. As shown in Figure 5, there is a strong nonlinearity
between the output pressure and water current. Moreover, the
nonlinear dynamics change along with the variations of the
rotation frequency of the pump. There is a time delay in the
water supply system; this delay is influenced by the variations
of the flux velocity. Fortunately, experiments verify that this
plant is a FMNS, according to the definition in Boyd and Chua;4

thus, the current problem becomes the task of controlling a high-
order FMNS plant with uncertainty and variational time delay,
as shown in Figure 3. According to sections 1 and 2, this
problem can be expected to be solved by our proposed
algorithm.

The control performances of LNMPC are compared with
CNMPC in Figures 6 (tracking the double-step signal 35.4-
43.4 KPa), 7 (tracking the double-step signal 30.0-35.6 KPa),
and 8 (tracking the double-step signal 45.0-50.0 KPa). Robust-
ness to the external disturbance is also examined at the 160th
second, as shown in Figure 7, where the opening of the hand
valve 5 in Figure 3 is increased by 20%. The parameters in
Figures 6 and 7 are set as follows:

For CNMPC: P ) 7, M ) 1, forgetting factorλ ) 0.7,
control signal weightingr ) 0.9, the softening parameterR )
0.2, fi(‚), gi(‚) in eq 30 are set to be polynomials withl ) 3, n
) 5.

For LNMPC: P ) 7, M ) 3, initial forgetting factorλ0 )
0.6, R ) 0.2, p ) 0.74,N ) 7, r ) 0.9.

Note that, in LNMPC,p is optimized according to Campello
and co-workers;12,13 N andr then are selected to guarantee the
stability based on Theorem 1. The other parameters of CNMPC
and LNMPC are almost the same, except for the difference
values of the control horizonM, which is intended to show the
merits of multistep control. To further examine the capability
of the proposed algorithm, statistical experiments are conducted
to track the double-step 45.0-50.0 KPa.

(1) For CNMPC, we setP ) 8 andM ) 1, and we select the
input and output memories from the sets{4, 5, ..., 9} and{3,
4, 5, 6}, respectively. We also conduct 24 experiments.

(2) For LNMPC, we setλ0 ) 0.98 and selectN andM from
the sets{5, 6, ..., 10} and{2, 3, 4}, respectively. The parameters
p and r are adjusted according to Theorem 1, with 18
experiments being conducted.

Figure 6. Control performances of tracking 35.4-43.4 KPa.

Figure 7. Control performances of tracking 30.0-35.6 KPa.
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The statistical results, such as the expected and optimal
settling time, overshoot, and steady-state errors are shown in
Table 1, with optimal parameters set asN ) 7, M ) 3, p )
0.68, and their corresponding performances in Figure 6.

Experimental results in Figures 6-8 show the advantages of
LNMPC over CNMPC, such as better transient performance,
smaller steady-state errors, and robustness to the external
disturbance. The underlying reasons are given as follows:

(1) With a multistep control horizon, the inner model of the
LNMPC can predict the dynamics of the controlled plant more
accurately, and it can enlarge the closed-loop region according
to Theorem 1.

(2) The plant is a FMNS with variational time delay and
uncertainty, which is very suitable to be approached via the
Volterra-Laguerre model;

(3) The CNMPC uses nonlinear programming to handle input
constraints, which cannot guarantee convergence to the objective
function global optimum for non-convex problems, whereas the
current analytic solution controller ensures convergence to the
global minimum objective function value.

In regard to the computational complexity, although its
Buchberger Algorithm, which calculates the Groebner bases,
will require some time, it is not necessary for LNMPC to use
nonlinear programming, which is an even more time-consuming
method, to determine the global optimum. In addition, the
present model can decrease both the number of model coef-
ficients and the noise-induced parameter variation. Therefore,
LNMPC is more efficient than CNMPC when applied to FMNSs
with uncertainty and variational time delay (such as the example
considered in this section).

6. Summary and Conclusions

The extension of the control horizon can help nonlinear model
predictive control (NMPC) algorithms address complex non-

linearities. However, this extension is not easy to realize, because
the online minimization of the objective function always leads
to a set of complex polynomial equations, including the input
of coupling items. The receding horizon optimization also causes
extra difficulties for the closed-loop stability analysis. With these
two problems in mind, we present a general method to extend
the control horizon with the help of the Groebner basis
technique. Sufficient conditions for its closed-loop stability are
also provided, in the sense that the input and output series are
both mean-square-bounded. The control horizon extension
developed is applicable to a wide range of NMPCs based on
open-loop stable discrete empirical models (NARMAX, NARX
models, etc.). Finally, the proposed multistep control algorithm
is demonstrated on an industrial water supply system with
significant improvements in the transient performance and
robustness to the system uncertainties.

Appendix A. Calculation of the Groebner Basis Using the
Buchberger Algorithm

First, because its definition is not straightforward, we
introduce some preliminary conceptions of the Groebner basis.

Definition 2 (Polynomial Ring).28 The set of all polynomials
f ) ∑R aRxR with coefficients in a fieldK is denoted asK [x1, ...,
xn], which is a polynomial ring. In addition, then-dimensional
affine space overK is defined to be the setKn ) {(a1, ..., an):
a1, ..., an ∈ K}.

9
Definition 3 (Ideal).28 A subsetI ⊂ K [x1,‚‚‚,xn] is an ideal

if it satisfies the following criteria:
(a) 0 ∈ I ,
(b) If f, g ∈ I , thenf + g ∈ I , and
(c) If f ∈ I andh ∈ K [x1, ..., xn], thenh ‚ ∈ I .

9
If fi ∈ K [x1, ..., xn](i ) 1, ...,s), we denote that

then a crucial fact is that〈f1, ..., fs〉 is an ideal.
Definition 4 (Leading Term). Given a nonzero polynomial

f ⊂ K [x], let f ) a0xm + a1xm-1 + ‚‚‚ + am, with a0 * 0. We
then say thata0xm is the leading term off and is written as
LT(f) ) a0xm.

9
Lexicographic Order. The order of relative importance that

should be used to illustrated Definition 4, e.g. ifx1 “is more
important than”x2, thenLT(x1

2x2
3 + x2

6) ) x1
2x2

3.

Figure 8. Control performances of tracking 45.0-50.0 KPa.

Table 1. Statistical Comparison of CNMPC and LNMPC Tracking
45.0-50.0 KPa

settling
time (s)

overshoot
(KPa)

steady-state
error (KPa)

CNMPC Control Index (24 Experiments)
optimal input memory,

output memory
6, 4

expected value 165 (8.8 (2.7
optimal value 136 (6.3 (2.3

LNMPC Control Index (18 Experiments)
optimalN, M, p 7, 3, 0.68
expected value 23 (1.7 (0.8
optimal value 18 (1.5 (0.5

〈f1,...,fs〉 } {∑i)1
s hifi:h1,...,hs ∈ K [x1, ...,xn]}
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Definition 5 (Groebner Basis).28 Fix a monomial order. A
finite subset{g1, ..., gs} of an idealI is said to be a Groebner
basis if 〈LT(g1), ..., LT(gs)〉 ) 〈LT(I )〉.

9
The Groebner basis technique can be applied to determine

all common solutions inKn of a system of polynomial equations
f1(x1, ..., xn) ) ‚‚‚ ) fs(x1, ..., xn) ) 0. Let xi ) ∆u(t + i -1|t)
ands ) M; the set of equations in eq 18 then can be solved by
this technique. Buchberger’s algorithm,27 which is described in
detail below, is used to determine the Groebner basis from a
set of polynomial equations.

Definition 6. (S-polynomial).28 Let f, g ∈ K [x1, ..., xn]; the
S-polynomial off andg then is given as the combination

where LCM denotes the least common multiple.
9

Definition 7.28 The termfF is the remainder, upon division
of f by the ordered s-tupleF ) (f1, ..., fs).

9
Bearing in mind Definitions 1-7, it is natural to introduce

Burchberger’s algorithm, as described below.
Buchberger’s Algorithm.27 Let I ) 〈f1,‚‚‚,fs〉 * {0} be a

polynomial ideal. A Groebner basis forI then can be constructed
in a finite number of steps using the following algorithm:

9
With the lexicographic orderx1 “is more important than”x2

“is more important than”‚‚‚ “is more important than”xn, the
resulting Groebner basis polynomials have a equation that
contains onlyxn; thus, the equation set can be easily solved.
(For more details, please refer to the functionGroebner(‚‚‚) of
MATHEMATICA). Note that the Groebner basis generated by
Buchberger’s algorithm is neither a minimal nor unique Groeb-
ner basis; some additional operations should be implemented
to obtain the reduced Groebner basis that is minimal and unique.

For example, the equationsx1
2 + x2

2 + x3
2 ) 1, x1

2 + x3
2 )

x2, x1 ) x3 with lexicographic orderx1 “is more important than”
x2 “is more important than”x3 can be computed by Buchberger’s
algorithm, combined with additional operations to get the
minimal and unique Groebner basis{g1, g2, g3}, which can be
easily solved as described below:

Appendix B. Derivation of the Key Polynomial (eq 27)
for Stability Analysis

According to Lemma 1, the transformation of the closed-
loop system to the polynomial form of eq 22 is fairly important
for stability analysis; thus, we will show the deviation of eq 27
as follows.

Note that each eigenvalue ofA is p ∈ (0, 1); thus, limif∞ Ai

) ϑ, whereϑN×N is a zero matrix, and it is reasonable to assume
that

whereNε is a positive integer that is sufficiently large.
Substituting eq 32 into eq 8 yields

Define

then

and

Define

Thus,

Assume that

Then,∂J/∂∆U(t|t) ) 0 (see eq 17) yields

S(f, g) )
LCM(LT(f),LT(g))

LT(f)
‚ f -

LCM(LT(f),LT(g))

LT(g)
g (31)

Input: F ) (f1, ..., fs)

Output: a Groebner basisG ) (g1, ...,gt) for I , with F ⊂ G

REPEAT

G′ : ) G

FOR each pair{p,q}, p * q in G′ DO

S:) S(p,q)G′

IF S* 0, THENG :) G ∪ {S}
UNTIL G ) G′

g1 ) x1 - x3 ) 0

g2 ) -x2 + 2x3
2 ) 0

g3 ) x3
4 + 0.5x3

2 - 0.25) 0

(I - Az-1)-1 ) ∑
j-0

Nz

Ajz-j (32)

L(t|t) ) z-1(I - Az-1)-1 Bu(t|t) ) ∑
j)0

Nε

Ajz-(j+1)Bu(t|t)
(33)

Γ(z-1,i)N×1 } [Ah i + ∑
j)0

Nε

Ai+jz-(j+1)]B (34)

L(t + i|t) ) Γ(z-1,i)u(t|t),(i ) 1),...,P (35)

ym(t + i|t) ) c0 + CTΓ(z-1,i)u(t|t) +

ΓΤ(z-1,i)DΓ(z-1,i)u2(t|t) (36)

Ψ0 } [c0, ...,c0]P×1
T (37)

Ψ1(z
-1,P) } [CTΓ(z-1,1),...,CTΓ(z-1,P)]P×1

T (38)

Ψ2(z
-1,P) } [ΓT(z-1,1)DΓ(z-1,1),...,

ΓT(z-1,P)DΓ(z-1,P)]P×1
T (39)

Ym(t + 1) ) Ψ0 + Ψ1(z
-1,P)u(t|t) + Ψ2(z

-1,P)u2(t|t) (40)

y(t) - ym(t) ) ω(t) (41)

2Ψ2
T(z-1,P)Ψ2(z

-1,P)∆u3(t) +

3Ψ2
T(z-1,P)Ψ1(z

-1,P)∆u2(t) +

2[-2Ψ2
T(z-1,P)Yr(t + 1) + 2Ψ2

T(z-1,P)Ψ0 +

Ψ1
T(z-1,P)Ψ1(z

-1,P) + r]∆u(t) +

[(1 - z-1)Ψ1
T(z-1,P)]Ωω(t) -

Ψ1
T(z-1,P)(1 - z-1)([z-(P-1),‚‚‚

z,1]Tyr(t + P) - Ψ0) ) 0 (42)
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Substituting our proposed multistep NMPC control law (eq 20)
into eq 42 yields eq 27 with

The counterparts of the traditional single-step control algorithm
(eq 19) are

Because of their complexities, the detailed expressions ofTi(z-1)
(for i ) 1, ..., µ - 1), D0(z-1), andΗ0(z-1) are omitted.
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Nomenclature

L2(R+) ) square integrable space in [0,∞)
I ) identity matrix
u(t) ) system input
y(t) ) system output
ω(t) ) external noise
z-1 ) one-step-backward shifting operator
P ) prediction horizon
M ) control horizon
∆u(t + i|t) ) predicted incremental control signal series
y(t + i|t) ) predicted output signal series
e(t) ) modeling error
R ) softening parameter
N ) Laguerre series truncation length
Nv ) Volterra series truncation length
L(t) ) Laguerre functional bases vector
A,B ) Laguerre system state matrices
p ) Laguerre filter pole
hm(t1,t2,...,tm) ) mth-order Volterra kernel
C ) first order coefficients matrix of Volterra-Laguerre Model
D ) second order coefficients matrix of Volterra-Laguerre

Model
Q,R ) positive-definite symmetric weighting matrices

Greek Symbols

θ ) extended coefficient vector of the Volterra-Laguerre Model
Φ(t) ) extended state vector of the Volterra-Laguerre Model
λ(t) ) forgetting factor
Ω ) output rectifying vector
ω(t) ) modeling error

Superscripts

T ) transpose
as) asymptotically

Subscripts

r ) reference
m ) model
c ) continuous time
v ) Volterra series

AbbreViations

MPC ) model predictive control
CNMPC ) conventional nonlinear MPC
LNMPC ) multistep Volterra-Laguerre model-based nonlinear

MPC
FMNS ) fading memory nonlinear system
NARMAX ) nonlinear auto-regressive moving average with

exogenous inputs
OFS) orthonormal functional series
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