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dvances in modeling bicycle and motor-
cycle dynamics are providing
improved understanding of the prin-
cipal modes of motion under
straight-running and steady-

state cornering conditions; see, for exam-
ple, [1] and the references therein. These
studies show that under certain operat-
ing conditions, some of the machine’s
modes can be lightly damped or even
unstable. The most important of these
modes are wobble and weave. Wobble
is a steering oscillation that is reminis-
cent of the caster shimmy that occurs in
the front wheels of a supermarket cart,
while weave is a fishtailing-type motion
involving roll and yaw. The frequency of
the wobble mode is of the order 8 Hz,
while the weave frequency is about 3 Hz,
where the exact figures depend on the speed
and machine parameter values.

Modern high-performance motorcycles
often employ a steering damper producing a
moment that opposes the angular velocity of the
steering assembly relative to the main frame. For
machines with a stiff front frame, a steering damper is
required to stabilize the wobble mode at high speeds,
while older, more flexible machines may require a steering
damper at intermediate speeds. Despite its benefits for wobble-
mode performance, a steering damper has a destabilizing effect on the
weave mode. As a result of this conflict, only a narrow range of damper coeffi-
cient values may be usable [2], [3].

Establishing damper settings that provide an optimal compromise between wobble- and
weave-mode damping is an issue of considerable interest and is a focus of the present article.
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In particular, we replace the conventional steering damper
with a network of interconnected mechanical components
that retains the virtue of the damper, while improving the
weave-mode performance. The improved performance is
due to the fact that the network introduces phase compen-
sation between the relative angular velocity of the steering
system and the resulting steering torque.

The approach described here is underpinned by classi-
cal passivity ideas from circuit theory [4] as well as analo-
gies between electrical and mechanical networks [5]; see
“Passive Circuit Synthesis.” In the standard electrical-
mechanical current-force analogy, an inductor corresponds
to a spring, while a resistor represents a damper. To com-
plete this analogy, a mechanical component is needed to

One of the principal motivations for the introduction of the

inerter in [5] is the synthesis of passive mechanical networks.

The fact that the mass element, together with the spring and

damper, is insufficient to realize the totality of passive mechani-

cal impedances can be seen using the force-current analogy

between mechanical and electrical circuits. In this analogy, force

and current are the through variables and velocity and voltage

are the across variables. Moreover, the terminals of mechanical

and electrical elements are in one-to-one correspondence. For

the mechanical elements, the spring and damper have two inde-

pendently movable terminals, whereas the terminals of the mass

are its center of mass and a fixed point in an inertial frame

(mechanical ground). The mass is therefore analogous to a

grounded capacitor. In contrast, the inerter is a two-terminal

device, analagous to an ungrounded capacitor, with both termi-

nals freely and independently movable.

Figure A shows a table of element correspondences in the

force-current analogy with the inerter replacing the mass element.

The admittance Y (s) is the ratio of through to across quantities,

where s is the standard Laplace transform variable. For mechani-

cal networks in rotational form, the

through and across variables are

torque and angular velocity, respec-

tively. It should be mentioned that the

reciprocal definition of admittance for

mechanical elements is commonly

found in the literature, for example in

[7], [8], and [25]. For further back-

ground on network analogies, see [5],

[24], and [26].

The theory of passive circuits has

been widely studied in the electrical

engineering literature [4], [27]. A linear

time-invariant two-terminal network

that possesses a real rational imped-

ance or admittance function is passive

if and only if the impedance or admit-

tance is positive real; see [4] and [27].

A celebrated result in electrical circuit

synthesis, proved by Bott and Duffin,

says that a rational, positive real func-

tion can be realized as the driving-

point impedance or admittance of a network comprised of only

resistors, capacitors, and inductors [28]. The result can be trans-

lated over to the mechanical setting as follows [5].

THEOREM

Let Y (s) be a positive-real rational function. Then there exists

a two-terminal mechanical network that consists of a finite

interconnection of springs, dampers, and inerters and whose

admittance equals Y (s).

This result allows the optimization of system properties with-

out fixing the network structure in advance. For example, it can

be shown [3] that the biquadratic real rational function

Y (s) = a2s2 + a1s + a0

d2s2 + d1s + d0
,

where a2, a1, a0, d2, d1, d0 are nonnegative and at least one of d0,

d1, d2 is positive, is positive real if and only if

a1d1 ≥
(√

a0d2 −
√

d0a2

)2
.

FIGURE A  Electrical and mechanical circuit symbols and correspondences. In the force-
current analogy, forces substitute for currents, and velocities substitute for voltages. The
admittance Y(s) maps velocity and voltage into force and current, respectively.
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represent a capacitor. Although a mass is analogous to a
capacitor with one terminal grounded, a new device is
required to represent a capacitor in general. The suitable
masslike element is the inerter [5], which can be either a
translational or rotational device.

In its rotational form, the inerter generates a resisting
moment M between two hinged bodies that is proportional
to the relative angular acceleration between them. Mathe-
matically,

M = b(ω̇1 − ω̇2),

where ω1 and ω2 are the angular velocities of the bodies,
and b is the inertance in kg-m2. As in [5], this use of the
term inertance is consistent with its usage in acoustics [6]
but is the reciprocal of the traditional usage in mechanical
vibrations [7], [8], where it represents a transfer function
from force to acceleration and is synonymous with the
term accelerance in that field.

In control systems terms the inerter is used to pro-
duce phase lead. The effect of the inerter, which con-
tains a flywheel of modest mass and dimensions, is
amplified by high-ratio gearing. This gearing can be

realized by an epicyclic arrangement
[9] or by a harmonic drive [10]. It is
possible to generate high inertance
values with relatively low-mass com-
ponents. More information about the
mechanical synthesis of inerters can
be found in “Inerter.” 

MOTORCYCLE MODEL
The motorcycle model used in this arti-
cle is based on the Suzuki GSX-R1000, a
stiff-framed high-performance produc-
tion vehicle. This motorcycle is fitted
with a standard telescopic front fork
suspension system and a swinging-
arm-based rear suspension that incor-
porates a single spring-damper unit
linked mechanically to the swing-arm,
a monoshock suspension; see Figure 1.

In Figure 1, each constituent mass is
represented by a red disk of diameter
proportional to the corresponding
mass. The model has a tree structure,
except for one kinematically closed
loop, which is associated with the
monoshock description. The freedom
associated with each body is shown in
Figure 2. The symbolic multibody soft-
ware system AUTOSIM [11] is used to
assist the model-building process.

A detailed description of the model
and its parameter set can be found in
[12]; only a summary is given here. The
main frame, which is allowed unre-
stricted motion, is pin connected to the
steering system, the rider’s upper
body, and the rear swing-arm. The tor-
sional compliance of the frame near the
steering head is modeled by including
a twist degree of freedom; this twist
occurs about an axis that is perpendic-
ular to the steer axis. The lower part of
the front forks and the front wheel are
free to translate along the fork line.
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FIGURE 1  Schematic of the GSX-R1000 motorcycle model. The scaled motorcycle and
rider model shows the machine layout with each mass depicted as a proportionally scaled
red disk. The motorcycle is shown in its nominal configuration with key points used in the
multibody description labeled as p.
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FIGURE 2  Model parent-child kinematic dependencies [15]. The machine and rider multi-
body hierarchy show the relevant bodies and their degrees of freedom. Reference axis
directions accord with SAE vehicle dynamics standards [16].
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Each road wheel is axisymmetric and is allowed to spin.
Each tire is represented as having a finite width, and the
ground contact points are allowed to migrate both circum-
ferentially and laterally. This migration process is modeled
by viewing the lowest point on each tire as the center of
the road-tire contact patch. The motion states of the tire
contact centers, the compression of the tires from their

nominal static equilibrium states, and the wheel camber
angles are used in magic formula tire models [1], [12], [13]
to compute the forces and aligning moments generated by
the tires. Magic formula methods comprise empirical for-
mulas and parameters that describe the forces and
moments developed, as measured in laboratories, as func-
tions of the operating conditions. Important operating
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The inerter is a two-terminal

device with the property that

an equal and opposite force

applied at the terminals is propor-

tional to the relative acceleration

between them. Mathematically,

the inerter obeys the force-veloci-

ty law F = b(v̇1 − v̇2), where the

constant of proportionality b is

called the inertance and has the

units of kilograms. In its rotational

form, the inerter obeys a

moment-angular velocity law

M = b(ω̇1 − ω̇2); in this case the

inertance is measured in kg-m2. To be practically useful, the

device must have a small mass. Also, the device must have rea-

sonable overall dimensions and must be able to function in all

spatial orientations.

One way in which a translational inerter can be constructed is

illustrated in Figure B. The device comprises a rack-and-pinion

mechanism, with the rack constrained to translate relative to the

housing. For such devices the value b of the inertance is easy to

compute in terms of the gear ratios and the flywheel’s moment

of inertia [5]. In general, if the device gives rise to a flywheel rota-

tion of α radians per meter of relative displacement between the t

erminals, then b = Jα2, where J is the flywheel’s moment of in-

ertia and the remaining inertial effects are neglected. For a rota-

tional inerter in which there is a gear ratio of n between rotations

of the terminals and a flywheel with moment of inertia J , it follows

that b = Jn2. Several prototype devices according to [9] have

been built and tested in the Engineering Department of Cam-

bridge University; see for example figures C and D.

Inerter

FIGURE B  Schematic of the inerter principle. A rack and pinion gearing arrangement drives a
rotating flywheel; the device’s inertance is a function of the gear ratio and the flywheel inertia.

Terminal 2 Flywheel Terminal 1

Rack
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FIGURE C  A prototype inerter. This translational inerter employs a
ballscrew to convert the linear motion of the plunger into rotation-
al motion of the flywheel (not shown). The device has a mass of
approximately 1 kg and an inertance in the range 60–200 kg
depending on the size of the flywheel. The device was designed
by N.E. Houghton and manufactured in the Cambridge University
Engineering Department.

FIGURE D  Prototype motorcycle steering compensator. This rota-
tional device employs an epicyclic gear box connected to a fly-
wheel through a fluid coupling to realize a series inerter-damper.
The mass is approximately 1.5 kg, while the inertance and damp-
ing are approximately 0.25 kg-m2 and 10 N-m-s/rad, respectively.
The device was designed by N.E. Houghton and manufactured in
the Cambridge University Engineering Department.



variables include the normal load, longitudinal and lateral
slip, and wheel camber (or inclination) angle. As a result of
the lateral compliance of the tires’ carcasses, lateral force
and moment variations are not generated instantaneously.
The time constants associated with the force and moment
production process or, more precisely, the relaxation
lengths, are functions of speed [14]. The suspension
springs and dampers are treated as linear, although sus-
pension and steering limit stops are included.

Two feedback controllers are used in the model. The
first is a fixed-gain proportional-plus-integral speed con-
troller that generates the rear-wheel drive torque. The sec-
ond is a speed-adaptive proportional-integral-derivative
steering torque controller that responds to the lean angle
error. With the aid of these controllers, the machine can
track prescribed speed and lean-angle trajectories and, in
particular, can be run to any feasible trim state to deter-
mine equilibrium configurations. The controller gains are
set to zero for the uncontrolled motorcycle.

The AUTOSIM model file can be configured in a linear
or nonlinear format. In the nonlinear configuration, a
numerical simulation program for studying transient

machine behavior, or evaluating the
machine’s trim states, is obtained.
Once a trim condition is reached, dis-
turbances such as road profiling can be
introduced. When the model is config-
ured in its linear mode, the system is
symbolically linearized for small per-
turbations about a general trim condi-
tion. The linearized models generated
by AUTOSIM take a state-space form

and a MATLAB M file is produced. Each
of the state-space matrices is parameterized to correspond
to the trim condition being studied. The symbolic MAT-
LAB file can be used to generate standard plots such as
Nyquist and root locus diagrams.

When modeling the motorcycle in a conventional man-
ner, the steering damper is included as an integral part of
the machine. This normally low-profile component gener-
ates a steering torque that is proportional to steering veloci-
ty. To allow a more general relationship between the
steering torque and the steering velocity, the steering
damper is separated from the remainder of the system and
represented as an external feedback loop as shown in Fig-
ure 3 [2], [3], [17]. The nominal motorcycle-damper combi-
nation will be referred to as the standard machine, while the
motorcycle without a steering damper will be referred to as
the basic machine. A conventional steering damper is repre-
sented as a pure gain in Figure 3. More general mechanical

FIGURE 4  Nyquist diagram of the straight-running basic machine.
The diagram corresponds to the single-loop system with steering
torque as input and with steering system angular velocity as output;
the machine’s forward speed is 75 m/s. The frequency associated
with crossing point A, the wobble-mode resonant frequency, is 47.6
rad/s. The frequency associated with the cusp B is 33.8 rad/s, and
that at crossing point C, the weave-mode resonant frequency, is
28.4 rad/s. If the damper coefficient is selected so that the point
−1/c is at A, the motorcycle oscillates at the wobble-mode frequen-
cy. If the damper coefficient is selected so that the point −1/c is at
C, the machine oscillates at the weave-mode frequency.
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FIGURE 3  Linearized motorcycle model and steering compensator.
The linearized motorcycle model is denoted P(s), while the steering
compensator is shown as K (s) in the feedback loop. The input d(s)
represents vertical road-displacement forcing, while the output δ(s)
is the steering angle and Ts(s) is the steer torque. The road forcing
signal, which is a scalar variable, is applied to both wheels. The
rear-wheel forcing signal is a delayed version of that at the front; the
time delay is given by τ = w/v in which w is the wheelbase and v is
the forward speed. The steering compensator K (s) is constant in
the case of a conventional steering damper.
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Wobble is a steering oscillation that is reminiscent

of the caster shimmy that occurs in the front wheels

of a supermarket cart, while weave is a fishtailing-

type motion involving roll and yaw.



networks are represented by K(s) in which s is the Laplace
variable. The transfer function K(s) from angular velocity
to torque is called the admittance function of a mechanical
network following the convention of [24, pp. 45, 46, 326]
but in contrast to other uses in mechanical engi-
neering [6, p. 238] and [8, p. 207].

CHARACTERISTICS OF THE 
NEAR-STANDARD MACHINE
Figure 4 shows a Nyquist diagram of the lin-
earized model of the basic machine in a straight-
running equilibrium condition at 75 m/s. This
diagram can be used to study the effect of chang-
ing the steering damper coefficient. The model
has two right-half-plane poles for this operating
condition because the wobble mode is unstable.
Since the steering damper is represented as a
pure gain in the feedback loop of Figure 3, it fol-
lows from the Nyquist criterion that stability of
the standard machine requires two counterclock-
wise encirclements of the point −1/c, where c is
the steering damper constant. If the steering
damping is set at a low value such that the point
−1/c is located at A, the machine is on the stabili-
ty boundary and thus oscillates at 47.6 rad/s,
which is the wobble-mode frequency. If the
steering damping is now increased, two counter-
clockwise encirclements of the point −1/c result,
and the motorcycle is stable. If the steering
damping is increased further so that the point
−1/c coincides with C, the machine oscillates at
28.4 rad/s and the weave mode is on the stability
boundary. Further increases in the steering
damping render the machine unstable since the
point −1/c is not encircled. The nominal steering
damper coefficient is 6.944 N-m-s/rad, thereby
locating the point −1/c at −0.144, which is
approximately midway between A and C. 

When the speed increases from 75 m/s to 85
m/s, the interval on the negative-real axis
associated with stabilizing damper parameter
values moves to the left [3]. This shift moves
the weave-mode crossing point toward the
point −1/c associated with the nominal damp-
ing coefficient, and the wobble-mode crossing
point moves away from it. As a result, this
speed increase reduces the weave-mode damp-
ing factor and increases the wobble-mode
damping factor.

Figure 5 shows straight-running root loci
where speed is the varied parameter. When the
steering damper coefficient is reduced from its
nominal (standard machine) value, the wobble
mode becomes unstable at high speed, while
the high-speed weave-mode damping increas-

es. The damper has almost no influence on the frequency
(imaginary part) associated with either of these modes.

Replacing the damper with an inerter, for which
K(s) = bs, leads to the root locus diagram of Figure 6.

FIGURE 6  Influence of a steering inerter on the root loci of the straight-running
motorcycle. Speed, which is the varied parameter, is increased from 5 m/s (�)
to 75 m/s (�). The × locus is associated with the basic machine, the ◦ locus
represents the basic machine fitted with a steering inertance of 0.1 kg-m2, and
the + locus represents the basic machine fitted with a steering inertance of 0.2
kg-m2.
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FIGURE 5  Influence of the steering damper on the root loci of the straight-running
motorcycle. Speed, which is the varied parameter, is increased from 5 m/s (�) to
75 m/s (�). The × locus is associated with the nominal machine damping value
of 6.944 N-m-s/rad, the ◦ locus is associated with a steering damping value of
3.94 N-m-s/rad, and the + locus with a steering damping value of 0.94 N-m-
s/rad.
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Although the inerter stabilizes the weave mode at high
speeds, it has a detrimental effect on the wobble-mode
damping. The reduction in the wobble-mode frequency is
caused by the effective increase in the steering system’s
moment of inertia. With regard to the damping of the
weave and wobble modes, the inerter and damper intro-
duce opposite trends.

COMPENSATION NETWORK

Desired Network Properties
The results of the previous section suggest that a mechani-
cal network that is damper-like over the wobble-mode fre-

quency range (5–9 Hz) and inerter-like at the lower fre-
quencies associated with the weave mode (2-3 Hz) might
be beneficial. Over the still lower frequency range used by
the rider (0–0.5 Hz) [19], [20], for balancing and path-fol-
lowing control, the network must be high pass to allow
unhindered rider steering action. Spring-like properties are
undesirable as are high values of steady-state gain.

It can be shown that the series connection of an inerter
and damper has the admittance function scb/(sb + c) ,
where b and c are the inertance and damping coefficient
respectively. The frequency response of this admittance
function is similar to that of an inerter (respectively,
damper) at frequencies below (respectively, above) the
break frequency c/b. This frequency response function can
be beneficial for simultaneous control of wobble and
weave. A related network is the resonant filter consisting
of the series connection of a damper, an inerter and a
spring (see Figure 7). This network has the admittance

Y(s) = s
s2 + sk/c + k/b

, (1)

where b, c, and k denote the inertance, damping coefficient,
and spring stiffness, respectively. 

FIGURE 9  Nyquist diagram of the straight-running motorcycle with a
forward speed of 75 m/s. The solid line represents the standard
machine, while the dashed line corresponds to the compensated
system using the series resonant filter shown in Figure 7 with
design values ωn = 50 rad/s, ζ = 0.4, and k = 500 N-m/rad.
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FIGURE 8  Frequency-response characteristics of the series resonant
filter network with the resonant frequency normalized to ωn = 1.
Three values of damping ratio ζ are illustrated.
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The dynamic characteristics of high-performance motorcycles can be improved

by replacing the conventional steering damper with a passive mechanical

steering compensator. 



Frequency Response Design
It is instructive to develop initial design guidelines for the
network parameters using classical frequency-response ideas.
The network admittance (1) can be rewritten in the form

Y(s) = k
s

s2 + 2ζωns + ω2
n

,

in which

ωn =
√

k/b , ζ =
√

bk
2c

. (2)

It can be seen from the frequency-response characteristics
of the network shown in Figure 8 that this network acts
like an inerter at low frequencies and introduces damping
in the vicinity of ωn, which must be tuned to the wobble-
mode frequency. The damping ratio ζ is a design parame-
ter that determines the sharpness of the magnitude peak
and the rate of change of phase with frequen-
cy. Smaller values of ζ give a more rapid
transition from inerterlike to damperlike behav-
ior. Larger values of ζ provide a wider range
of frequencies where damperlike behavior per-
sists. The peak value of the magnitude char-
acteristic is achieved at ωn and takes the
value of c, the damper constant. It can be seen
in (2) that ωn and ζ fully specify the phase
characteristics of the network.

For an initial trial design the parameters
ωn = 50 rad/s and ζ = 0.4 are selected. Prior
to fixing a value of the spring constant, it is
observed that k = 320 N-m/rad places the
point −1 in the middle of the stable k-value
range in the 75 m/s straight-running condi-
tion. However, since this value of k does not
produce adequate wobble-mode damping
performance at high lean angles, the spring
stiffness is increased to k = 500. This change
improves the wobble-mode damping global-
ly but at the expense of the weave mode.
Back substitution gives inerter and damper
parameter values of b = 0.2 kg-m2 and
c = 10 N-m-s/rad, respectively. The influ-
ence of this particular choice of parameters
is illustrated in Figure 9. It may be observed that the net-
work moves the negative-axis crossing point associated
with weave-mode instability toward the origin and the
crossing point linked to wobble to the left of the diagram.
The network opens up the interval over which two coun-
terclockwise encirclements can be achieved. The root
locus plot that results from this mechanical network with
parameter values b = 0.2 kg-m2, c = 10 N-m-s/rad, and
k = 500 N-m/rad is shown in Figure 10. Although the
design is based on a single high-speed straight-running
linearized model, compared with the standard machine,
substantial improvements in the damping of both the

wobble and the weave modes under all operating condi-
tions are achieved. The improvement in the high-roll
angle (45◦) case is worthy of particular note [3].

OPTIMIZATION
We now optimize the parameters of the series resonant
filter. The chosen performance criterion reflects the role
played by road-displacement disturbances in stability-
related road traffic accidents [21] in the form of an H∞
response measure, together with a penalty on the close-
ness of approach of the open-loop Nyquist locus to the
point −1.

The objective function considered is

Jf = max
�

{max{J1, γ J2}}, (3)

where

FIGURE 10  Root loci for the compensated motorcycle. Four values of roll angle are
illustrated:  straight running (×), 15◦ (◦), 30◦ (+), and 45◦ (♦). The speed is varied
from 7 m/s (�) to 75 m/s (�). The machine is fitted with the series resonant network
with the parameter values b = 0.2, c = 10, and k = 500.
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TABLE 1 Design parameters, objective functions, and
worst-case configurations obtained by optimizing the
frequency-domain index (3) for the conventional steering
damper and the series resonant filter.

Maximum 
Compensator Parameters Jf deg m/s rad/s
Conventional c = 8.0695 109.8412 45 9 52.97 
damper 

Series resonant k = 594.08 40.576 45 7 49.95
filter c = 13.716

b = 0.24252
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J1 = max
ωi

∣∣∣∣
P11( jωi)

1 − K( jωi)P22( jωi)

∣∣∣∣ (4)

and

J2 = max
ωi

∣∣∣∣
1

1 − K( jωi)P22( jωi)

∣∣∣∣ . (5)

The set � of linear motorcycle models used in (3) con-
tains linearized models corresponding to trim roll angles
of 0, 3, 6, . . . , 45◦ and trim speeds of 7, 9, 11, . . . , 75 m/s.
The subindex J1 in (4) is reminiscent of the L∞-norm of the
transfer function between road-displacement forcing and
steer angle (see the “Motorcycle Model” section and Figure
3), while J2 in (5) is the reciprocal of the distance of closest

approach between the Nyquist locus and the
point −1. J2 effectively penalizes high values
of the classical sensitivity function [22]. The
subindex J2 is weighted in Jf by the constant γ ,
set by trial to a value 16. When evaluating Jf , a
100-point angular frequency sequence in geo-
metric progression, from ω = 101.3 rad/s to
ω = 101.85 rad/s is used; this range includes
all of the peaks in Jf . The MATLAB sequen-
tial quadratic programming algorithm fmin-
con [23] is used for optimization. The
algorithm is initialized using the parameters
obtained from the results described in the
“Frequency Response Design” section.

RESULTS
The results of optimizing with the frequency
response index (3) are given in Table 1 for
the conventional damper and the series reso-
nant filter. In addition to the optimal para-
meter values, the table provides the
minimum values achieved for Jf , the trim
condition at which the minimum is achieved,
and the worst-case frequencies associated
with the limiting value of the index. The
wobble mode dictates the lowest achievable
value of Jf . For the filter, the closest approach
between the Nyquist plot and the point −1
exceeds 16/40.576 = 0.394, where 16 is the
value of γ used in (3).

Figure 11 shows the root locus of the
motorcycle’s key modes for a wide range of
speeds and roll angles using the optimized
series resonant filter network. The network
achieves improved damping ratios for each
of the machine’s lightly damped modes.

Figure 12 shows the road-forcing
response J1 in (4) with the optimized series
resonant filter network installed; the trim
state ranges over the motorcycle’s operating
regime. As expected, under straight-running
conditions, the road-forcing response is
zero. In common with each of the other net-
works, the highest gain values, which occur
at low speeds and high roll angles, corre-
spond to the excitation of the wobble mode.
High values of road-forcing-to-steer-angle
gain also occur under high-speed, low-roll-
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FIGURE 12  Road-forcing gain as a function of operating condition. The speed is
varied between 7 and 75 m/s, and the roll angle between 3◦ and 45◦. The motor-
cycle is fitted with the frequency-response-optimized series resonant compensa-
tion network.
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FIGURE 11  Root loci for the motorcycle compensated by the optimized series res-
onant filter with parameters as in Table 1. Four values of roll angle are illustrated,
namely, straight running (×), 15◦ (◦), 30◦ (+), and 45◦ (♦). The speed is varied
between 7 m/s (�) and 75 m/s (�).
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angle conditions (see 75 m/s and 15◦ roll angle), which
correspond to excitation of the weave mode.

The road-forcing characteristics of the machine are
also illustrated by the frequency-response plots shown
in Figures 13 and 14. As is evident from the first of
these figures, the series resonant filter network decreas-
es the peak wobble-mode road-forcing gain by approxi-
mately 15 dB. For the trim condition considered in
Figure 13, the wobble mode is particularly vulnerable to
road-displacement forcing. Figure 14 corresponds to a
high-speed trim condition in which the weave mode is
correspondingly challenged. In this case, the network
reduces the weave-mode peak by approximately 3 dB as
compared to the standard machine.

CONCLUSIONS
This article shows that the dynamic characteristics of high-
performance motorcycles can be improved by replacing
the conventional steering damper with a passive mechani-
cal steering compensator. The steering compensators are
mechanical networks comprising springs, dampers, and
inerters. The compensators show the potential to signifi-
cantly improve the damping of both wobble and weave
modes simultaneously. These networks exploit the inert-
er’s ability to provide phase advance. The compensator’s
role can be interpreted as that of a feedback element in a
control systems structure, despite its consisting of passive
mechanical elements.

The design methodology adopted uses Nyquist fre-
quency response ideas, root-locus analysis, and loop-
shaping design to obtain a preliminary choice of
parameters, which are then refined by numerical opti-

mization. The results show substantial global perfor-
mance improvements as compared with conventional
steering dampers. 

The broad issue of the practical implementation of pas-
sive mechanical compensators is the subject of ongoing
research, including the fabrication of integrated mechani-
cal networks as illustrated in Figure 7. Additional issues
such as the selection of optimal gear ratios for the inerters
and the correct dimensioning of the components so that
they have sufficient working life are also important consid-
erations. From a packaging perspective, a steering com-
pensator needs to be acceptably small and light. Ideally,
the compensator will fit in the space normally occupied by
a conventional steering damper. 
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FIGURE 14  Bode magnitude plot of steer angle response to road-
displacement forcing (0 dB = 1 rad/m). The machine is operating
at a forward speed of 75 m/s and a roll angle of 15◦. The solid line
represents the standard machine, while the dashed line repre-
sents the machine with the optimized series resonant filter net-
work compensator.
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FIGURE 13  Bode magnitude plot of steer angle response to road-
displacement forcing (0 dB = 1 rad/m). The machine is operating
at a forward speed of 15 m/s and a roll angle of 45◦. The solid line
represents the standard machine, while the dashed line repre-
sents the machine with the optimized series resonant filter net-
work compensator.
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