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Abstract—This paper presents a procedure for the synthesis of
positive real controllers based on matrix inequalities. Problems
with 2 and cost are considered and the resulting bilinear
matrix inequality problems are solved using local, iterative al-
gorithms. The procedure is applied to the synthesis of passive
suspensions for the optimization of certain performance measures
for a quarter-car model. The characterization of the positive real
constraint using matrix inequalities and the use of a new mechan-
ical element called the inerter, permits the optimization over the
entire class of positive real admittances and the realization of the
resulting admittance using passive elements. The optimization
results are compared with previous results obtained using opti-
mization over fixed-structure admittances. The proposed method
can reproduce the previous results and achieve better results in
certain cases. Results of the experimental testing of a mechanical
network involving an inerter are presented.

Index Terms—Inerter, linear matrix inequalities, mechanical de-
vice, optimization over positive real admittances, synthesis of pas-
sive mechanical networks, vehicle suspensions.

I. INTRODUCTION

POSITIVE real systems occur in many applications, for ex-
ample, mechanical structures with collocated sensors and

actuators, passive electrical networks (those with only resis-
tors, inductors, and capacitors), and passive mechanical net-
works (those with masses, dampers, and springs). Positive real
systems have motivated the design of strictly positive real com-
pensators since the negative feedback interconnection of a posi-
tive real plant with a strictly positive real compensator is asymp-
totically stable.

Recently, a new mechanical network element termed the
“inerter” was introduced as an alternative to the mass element
for synthesis of mechanical networks [1]. In the context of
vehicle suspensions this was exploited in [2] by optimizing
standard performance measures over low-order fixed-structure
admittances. The present paper considers the more general class
of positive-real functions and seeks to use matrix inequalities
as a tool for optimization.
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Linear matrix inequalities (LMIs) [3] have emerged as a pow-
erful paradigm and design technique for a variety of linear con-
trol problems such as and synthesis. Since solving an
LMI is a convex optimization problem, such formulations can
be solved efficiently using interior-point algorithms. LMIs have
also been successful in formulating and solving multiobjective
control problems in which various performance specifications
(both in the frequency and the time domain) are used for various
input-output channels. It was shown in [4] that using a multiob-
jective formulation, the ride comfort and suspension travel could
be improved for a vehicle suspension system.

The problem of synthesizing positive real compensators can
be formulated using matrix inequalities since the positive real
property of a system can be expressed as an LMI using the pos-
itive real lemma [3]. Considerable research has been conducted
toward the synthesis of positive real controllers that achieve a
level of performance for the control of flexible structures. In
[5], a suboptimal version of this problem is shown to be a convex
optimization problem and expressed in the form of an LMI. Both
the and the positive real constraint are characterized using
a common Lyapunov function. In [6], an iterative LMI proce-
dure is proposed for the same problem with the difference that
two separate Lyapunov functions are considered for the per-
formance and the positive real constraint. Both methods require
that the order of the controller is the same as the order of the
generalized plant.

In this paper, the and positive real synthesis problems
are formulated as bilinear matrix inequality (BMI) problems. In
each case an optimization approach is used to find locally op-
timal solutions. The proposed algorithms allow for any order
controller to be considered which is important when searching
for a simple network realization of a given positive real function.
It will be demonstrated using the quarter-car model that the ma-
trix inequality approach can reproduce the results and give im-
provements over the previous optimization method.

II. SYNTHESIS OF ONE-PORT MECHANICAL NETWORKS

A mechanical network of pure translational type consists of
mechanical elements (such as springs, masses, dampers, and
levers), which are interconnected in a rigid manner. The pair of
end-points of the spring and damper are called nodes or termi-
nals. In a mechanical system, a port is a pair of nodes to which
an equal and opposite force is applied and which experience
a relative velocity . The force, which is a through variable, in-
volves a single measurement point and requires the system to
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be severed at that point to make the measurement. The velocity,
which is an across variable, can be measured without breaking
into the system and the relevant quantity is the difference of the
variable between the two points. The concept of through and
across variables is natural also for electrical networks and moti-
vates the force-current analogy [7], which is power preserving,
with the following correspondences:

force current

velocity voltage

mechanical ground electrical ground

kinetic energy electrical energy

potential energy magnetic energy.

The impedance of a network is defined as the ratio of the
across variable to the through variable and the admittance
is defined as the reciprocal of the impedance. Thus, mechanical
admittance is the ratio of force to velocity.

A. Positive Real Functions

A mechanical one-port network with force-velocity pair
is defined to be passive if for all admissible , which

are square integrable on

(1)

By definition, a passive network can not deliver energy to the
environment. As shown in [8] and [9], the network is passive if
and only if the following condition is satisfied: is analytic
in , , for all at which
is finite, and any poles of on the imaginary axis or at in-
finity are simple and have a positive residue. Any real-rational
function satisfying the above is called positive real. The
same condition holds for admittances .

The following fundamental theorem is used in electrical cir-
cuit synthesis of positive real impedances and admittances.

Theorem 2.1 [9], [10]: Consider any real-rational function
, which is positive real. There exists a one-port

electrical network whose impedance (admittance) equals
which consists of a finite interconnection of induc-

tors, resistors, and capacitors.

B. The Inerter

It was pointed out in [1] that Theorem 2.1 cannot be applied
directly to the synthesis of mechanical networks because of the
fact that the mass element is analogous to a grounded capacitor.
Thus, the mechanical analog of an electrical network with un-
grounded capacitors can not be realized with the use of springs,
dampers, and masses. This imposes a restriction on the class
of passive mechanical impedances which can be physically re-
alized. This restriction is lifted by defining a new mechanical
element, the inerter, which is the mechanical analog of the un-
grounded capacitor.

Fig. 1. Circuit symbols and correspondences with defining equations and
admittance Y (s).

Definition 2.1 (Inerter [1]): The (ideal) inerter is a mechan-
ical two-terminal device with the property that the equal and
opposite force applied at the nodes is proportional to the rela-
tive acceleration between the nodes, i.e., where

, are the velocities of the two terminals and is a con-
stant of proportionality called the inertance, which has units of
kilograms.

The element correspondences in the force-current analogy
with the inerter replacing the mass element are shown in Fig. 1.

Prototype inerters have been built at Cambridge University
Engineering Department (CUED) using the following: 1) a
plunger sliding in a cylinder which drives a flywheel through a
rack, pinion and gears [2] and 2) a ball–screw mechanism. Ex-
periments using the latter device are described in Section VIII
of the present paper.

C. The Control Synthesis Paradigm

In [2], mechanical networks comprising springs, dampers,
and inerters were studied for use in passive suspensions for
both quarter-car and full-car vehicle models. Performance ad-
vantages were found for ride comfort and handling compared
to conventional passive suspension struts. The approach in [2]
was to consider various fixed-structure admittances which con-
tained at most one inerter and one damper. The parameter values
of the components were tuned in order to optimize the various
performance measures. This method addresses only a small part
of the class of positive real admittances that can be physically
realized. In order to be able to synthesize admittances over the
whole class of positive real functions, we use a control synthesis
paradigm along with a state-space characterization of positive
realness. The search for positive real admittances is formulated
as a search for positive real “controllers” as shown in
Fig. 2. The characterization of positive realness of the controller
is achieved with the following result. This approach requires
the order of the controller to be specified in the optimization
procedure.

Lemma 2.2 (Positive Real Lemma [3]): Given that

(2)
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Fig. 2. Control synthesis paradigm applied for the synthesis of a positive real
admittance K(s).

Fig. 3. Quarter-car vehicle model with predetermined static stiffness.

then is positive real if and only if there exists that
satisfies the LMI

(3)

III. VEHICLE SUSPENSIONS

A. The Quarter-Car Model

The quarter-car model presented in Fig. 3 is the simplest
model to consider for suspension design. It consists of the
sprung mass , the unsprung mass , and a tyre with spring
stiffness . The suspension strut provides an equal and oppo-
site force on the sprung and unsprung masses and is assumed
to be a passive mechanical admittance ,
where is positive real and has no pole at . In
this paper, we fix the parameters of the quarter-car model as

kg, kg, kN/m.

B. Performance Measures

There are a number of practical design requirements for a
suspension system, such as passenger comfort, handling, tyre
normal loads, and limits on suspension travel, which require
careful optimization. In the quarter-car model these can be trans-
lated approximately into specifications on the transfer functions
from the disturbance signals and to the signals and

. The performance measures used in this paper are discussed

in detail in [2]. The first two assume a standard rational power
spectrum for the road disturbances, while the third relates to the
effect of loads on the sprung mass.

For the ride comfort we use the root-mean-square (rms) body
vertical acceleration in response to road disturbances, denoted
by , which is equal to

(4)

where is the speed of the car, is the road roughness
parameter, denotes the transfer function from the road
disturbance to the displacement of the sprung mass , and

is the standard norm.
To characterize road holding we use the rms dynamic tyre

load in response to road disturbances, denoted by , which is
equal to

(5)

Another factor to be considered is the ability of the suspen-
sion to withstand external loads on the sprung mass, e.g., those
loads induced by braking, accelerating, and cornering. The fol-
lowing measure is used for this purpose:

(6)

where represents the -norm. We will attempt to min-
imize each performance measure on its own over positive real
admittances of fixed degree and compare the results with
those obtained in [2].

C. The Quarter-Car Model as a Linear Fractional
Transformation for the Optimization of and

Since the performance measures are expressed as either
or norms of certain transfer functions, it is proposed to for-
mulate the suspension design problem as a standard or
controller synthesis problem. This requires that the quarter-car
model is written as a linear fractional transformation (LFT)
with respect to the unknown, positive real admittance .
The interconnection used for the derivation of the generalized,
quarter-car plant is given in Fig. 3. We require that the static
stiffness of the suspension is determined a priori and is given
by . The equations of motion are given by

(7)

(8)

(9)

The external input of the generalized plant is ,
while the performance output is given by . Writing
the above equations in state-space form with the state vector
given by results in the quarter-car, gener-
alized plant

(10)
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where

Let , , be the respective columns of , and let ,
, be the respective rows of . Since the static stiffness is

determined ita priori, the admittance must have zero static
stiffness, hence, it may not contain an integrator. This is in fact
ensured by the structure of the generalized plant. The transfer
function from to is given by

Therefore, a “stabilizing controller” cannot have an inte-
grator because it will cause an right-half plane (RHP) pole–zero
cancellation [11, Sec. 12.1].

IV. OPTIMIZATION OF

The generalized plant for the optimization is formed by
considering as the external disturbance and as the perfor-
mance output. The objective is to find a positive real so
that is minimized. From (10), the observable and
controllable representation of the generalized plant is given
by

(11)

(12)

Given a controller of order , with state-space represen-
tation as in (2), let the state-space representation of the closed-
loop system resulting from the interconnection of the general-
ized plant and the controller be given by

(13)

Theorem 4.1: There exists a positive real controller of
order such that and is stable, if and only
if the following problem is feasible for some , ,

, and , , , of compatible dimensions:

Fig. 4. Comparison of first-order admittances K(s) for the quarter-car model
for k = 60 kN/m.

The first three LMIs are necessary and sufficient conditions
for the existence of a stabilizing controller that achieves an
upper bound of on the -norm [12]. The fourth LMI further
restricts the controller to be positive real. Without the positive
real constraint, the -synthesis problem can be formulated
as an LMI problem as shown in [12]. With the positive real
constraint it is not obvious how to do so, hence, an iterative
optimization method is employed to solve the BMI problem
locally. The method, which is described in [13], is to linearize
the BMI using a first-order perturbation approximation, and
then iteratively compute a perturbation that “slightly” improves
the controller performance by solving an LMI problem. The
proposed scheme is already implemented in YALMIP [14],
which is a MATLAB toolbox for rapid prototyping of opti-
mization problems. A feasible starting point must be given to
the algorithm.

A. Optimization Results

There are two issues to be investigated regarding the proposed
synthesis method. The first is whether it can reproduce the re-
sults of the fixed-structure optimization and the second, whether
it can give improved levels of performance exploiting the opti-
mization over the entire class of positive real admittances.

An example is presented that demonstrates that the proposed
method is successful in reproducing the fixed-structure opti-
mization results. The quarter-car model is considered with static
stiffness kN/m. The fixed-structure admittance pro-
posed in [2] is a damper in series with an inerter, i.e.,

, which achieves a value of for
Ns/m and kg. The admittance calculated by

YALMIP is given by

(14)

and achieves . A comparison of the two admit-
tances is shown in Fig. 4. The YALMIP admittance cannot ex-
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Fig. 5. Improvement in J when using higher order admittances.

Fig. 6. Percentage improvement in J when K(s) is third-order.

actly match the fixed-structure admittance because it can only
optimize over the class of strictly positive real controllers which
implies .

Apart from being able to approximately achieve the
fixed-structure admittances suggested in [2] it is useful to
know whether can be reduced further by optimizing over
higher order admittances. The highest order admittance used in
[2] was of second order. The best results obtained so far with
third-order admittances are presented in Fig. 5 as a function of
the static stiffness of the suspension, along with previous results
related to fixed-structure admittances. The “best” fixed-struc-
ture admittance found in [2] is a parallel connection of a damper
and centering spring in series with a parallel connection of an
inerter and centering spring and was given the name layout .
The percentage improvement is calculated with respect to the
values of achieved by the fixed-structure admittance.
The results are shown in Fig. 6. The optimization algorithm

was run for values of static stiffness in the range 10–120 kN/m
at a spacing of 5 kN/m.

V. OPTIMIZATION OF

A. Generalized Plant for the Optimization of

The performance output corresponding to is given by
. This is implemented by adding an integrator on

, thus creating one more state for the generalized
plant. The generalized plant for the optimization of is given
by

(15)

(16)

The addition of the extra integrator creates problems since
the added state is uncontrollable. Consider the similarity trans-
formation given by

(17)

The transformed system equations are

(18)

(19)
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Fig. 7. S7 suspension layout proposed in [2].

It is evident that the state is uncontrollable so it can be
removed. Furthermore, the output equation

(20)

is divided by in order to make the state-space matrices more
well-conditioned resulting in

(21)

The performance measure is now equal to

(22)

The generalized plant for the optimization is finally given by

(23)
The optimization problem is similar to the optimization
problem, i.e., a positive real controller is sought to mini-
mize the norm of the closed-loop transfer function. A the-
orem can be written down which is directly analogous to The-
orem 4.1 to give a necessary and sufficient condition for the
achievement of a certain performance level. Again, this char-
acterization is in the form of a BMI which can be solved locally
using the iterative algorithm implemented in YALMIP.

B. Optimization Results

The optimization of the measure was attempted in [2] over
fixed structure suspensions. The maximum order of the con-
sidered fixed structure admittances was three. The third-order
suspension is referred to as S7 and is shown in Fig. 7. The

Fig. 8. Comparison of YALMIP optimization results with fixed-structure
optimization results for J .

fixed-structure second-order layout is referred to as S5 and is
the same as S7 with the relaxation spring removed.

The iterative algorithm implemented in YALMIP was used
to optimize over general second-order admittances in order
to investigate whether can be improved further. The opti-
mization was performed for ranging from 10 to 120 kN/m
in steps of 2 kN/m. The comparison of the optimization results
obtained with YALMIP with those obtained by fixed-structure
optimization are presented in Fig. 8. The results exhibit three
distinct curves suggesting that the structure of the suspension
changes as the static stiffness varies. At low and high stiffness,
the YALMIP second-order admittance can do better than both
the second-order S5 layout and the third-order S7 layout. An
encouraging feature of the optimization algorithm is that it au-
tomatically finds the change in the structure of the admittance as
the static stiffness varies in order to obtain the minimum value
of . It is of interest to investigate the structure of the suspen-
sions obtained with YALMIP and understand how they differ
from the fixed-structure suspensions.

1) The Suspensions Corresponding to the Low Static Stiff-
ness Range : As a representa-
tive of this class of admittances we consider the admittance of
the suspension for kN/m. The admittance is given by

(24)

and it achieves a value of . A simpler admittance is
constructed by canceling the term and by modifying
the term sufficiently to maintain the positive real
character of the new admittance. The new admittance is given
by

(25)

Its frequency response is compared with the frequency response
of and with the frequency response of the fixed-structure
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Fig. 9. Comparison of the original and approximate admittances at k =
12 kN/m.

Fig. 10. Suspension layout corresponding to the admittance K (s).

admittance S2 (damper in series with relaxation spring, see [2])
in Fig. 9. The approximate admittance achieves
and its realization is given in Fig. 10. If we remove the small
inertance in the realization of Fig. 10, the suspension layout
becomes the same as the S2 layout but with slightly different
values for and from the ones obtained in [2]. Therefore, it
seems that the 1.5% improvement in does not justify the extra
complexity of the realization in Fig. 10 over the S2 layout and
the unrealistic damper rate of (although a very large damper
rate implies a short circuit and, thus, it can be neglected).

2) The Suspensions Corresponding to the Intermediate Static
Stiffness Range kN/m kN/m : As a representa-
tive of this class of admittances we consider the admittance of
the suspension for kN/m. The admittance is given by

(26)

Fig. 11. Comparison of the original and approximate admittances for k =
50 kN/m.

and it achieves a value of . A simpler admittance is
constructed by canceling the term and by approx-
imating the term with . The approximate
admittance is given by

(27)

and it achieves , i.e., there is practically no degra-
dation in . The comparison of the frequency responses of the
original admittance with is shown in Fig. 11. A
realization of is constructed by noting that,

(28)

It is obvious that is the admittance of the network con-
sisting of an inerter in series with a damper in series with a
spring shown in Fig. 12. Note that the layout S7 would be the
same as the layout of Fig. 12 if we include centering springs in
parallel with the damper and the inerter.

3) The Suspensions Corresponding to the High Static Stiff-
ness Range : As a representa-
tive of this class of admittances we consider the admittance of
the suspension for . The admittance is given by

(29)

and achieves . A simpler admittance is constructed
by making the term equal to and by modifying the
remaining terms so that the positive real property is preserved.
The approximate admittance is given by

(30)
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Fig. 12. Suspension layout corresponding to the admittance K (s) for k = 50 kN/m.

Fig. 13. Comparison of K(s) and K (s) at ks = 90 kN/m.

and achieves , , there is 1.6% degradation in .
A comparison of the frequency responses between and

is shown in Fig. 13. A realization for the admittance
is found by noting that

(31)

The mechanical network corresponding to the admittance in
(31) is shown in Fig. 14. Taking into account that a large value
of damper rate is a short circuit, we remove the large damper
of Ns/m and investigate the remaining admittance

). The change in the frequency response from that of
is hardly noticeable (see Fig. 13) but deteriorates by

0.6% to a value of 534.8.
As seen in this section, it is frequently the case that an admit-

tance obtained from the optimization algorithm may be approx-
imated by a positive real function of the same or lower order
to permit a simpler realization, while incurring only a minimal
degradation in performance. This has been carried out here on
a case-by-case basis without seeking a systematic method to
achieve this.

VI. OPTIMIZATION OF

The generalized plant for the optimization is formed by
considering as the external disturbance and as the perfor-
mance output. The objective is to find a positive real so
that is minimized. Here it is advantageous
to allow the admittance to be either proper or nonproper.
The proper admittance is given by (2) and the nonproper one is
given by

(32)

with in order to satisfy positive realness along with
the LMI condition (3). The term represents an inerter with
inertance in parallel with the proper admittance.

A. Optimization Over Proper Controllers

From (10), the observable and controllable representation of
the generalized plant is

(33)

(34)

Given a controller of order , with state-space represen-
tation as in (2), let the state-space representation of the closed-
loop system resulting from the interconnection of the general-
ized plant and the controller be denoted by

(35)

Theorem 6.1: There exists a positive real controller of
order such that and is stable, if
and only if, the following problem is feasible for some ,

, and , , , of compatible dimensions

(36)

where and is a symmetric matrix with

where denotes the transpose of the preceding matrix.



PAPAGEORGIOU AND SMITH: POSITIVE REAL SYNTHESIS USING MATRIX INEQUALITIES FOR MECHANICAL NETWORKS 431

Fig. 14. Suspension layout corresponding to the admittance K (s) for k = 90 kN/m.

The matrix inequality results by applying the
Bounded Real Lemma on the closed-loop system of (35),
which is a necessary and sufficient condition for the existence
of a stabilizing controller that achieves an upper bound on the

-norm. In the absence of the positive real constraint, the
search for a stabilizing controller of order that mini-
mizes the closed-loop norm was formulated as a convex
optimization problem in [15]. With the additional positive real
constraint, it is not obvious how to formulate the problem as a
convex problem.

The problem of Theorem 6.1 is a BMI and an iterative algo-
rithm is proposed to solve the problem locally about a feasible
starting point. The idea is to fix a subset of the decision vari-
ables so that the matrix inequality is linear with respect to the
remaining decision variables and thus can be solved efficiently.
The steps for the algorithm are described below.

1) Decide on the static stiffness of the suspension and on
the order of the controller . Give an initial controller

which is positive real (as well as stabi-
lizing).

2) For the given controller, minimize over the Lyapunov
matrices and that are associated with the
bound and the positive real condition, respectively.

3) Fix and according to the values of the previous
step. Minimize over the controller matrices, using as an
initial starting point, the previous controller matrices and
the value of from the previous step.

4) Unless satisfies some stopping criterion, go to step 2.
Note that there is a theoretical minimum of given by

which is equal to .

B. Optimization Over Nonproper Controllers

The nonproper admittance (32) can be represented in ordinary
state-space form by introducing a second measurement equal to
the acceleration signal as follows:

(37)

(38)

The generalized plant equations are augmented by the accel-
eration measurement output to give the following equation:

(39)

where

(40)

(41)

With the change of variable

(42)

the closed-loop equations are given by

Theorem 6.2: There exists a nonproper, positive real admit-
tance with such that
and is stable, if and only if the following problem is feasible
for some , , and , , , , of
compatible dimensions:

(43)

where and is a symmetric matrix with
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Fig. 15. Optimization results for J over fixed-structure admittances.

The constraint on ensures that since
. The problem in Theorem 6.2 is also solved locally using a

similar iterative algorithm as the one for the proper controller
case. The main difference is that the algorithm used updates the
controller matrices in two steps rather than in one.

C. Optimization Results

The proposed algorithms for optimization will be assessed
by comparing the obtained admittances with the fixed-structure
admittances suggested in [2]. Fig. 15 presents the optimum

versus static stiffness and shows the extent to which it is
achieved by two fixed-structure admittances. The first is a
damper, which achieves the optimum up to kN/m and
the other is a damper in parallel with an inerter that achieves
the optimum up to 102 kN/m.

The algorithm for proper admittances was tested at
kN/m. For this value of the optimum is .

The algorithm produced a first-order admittance given by

(44)

that guarantees an upper bound of .
The obtained admittance is more complicated than the
damper proposed in [2] with optimal setting in the range

Ns/m Ns/m. An interesting observation
is that if we allow the stiffness of the spring in (44) to take
its extreme values , then we recover approximately the
optimal damper range.

The algorithm for the nonproper admittances was tested for
. For this value of the optimum is

. The algorithm produced a first-order admittance given by

(45)

that guarantees an upper bound of . The
first-order lag is relatively small so it can be neglected without
causing a significant degradation in . Thus, the suspension

Fig. 16. Quarter-car suspension as a parallel connection of a spring, a damper,
and an inerter.

consists of a parallel connection of a spring kN/m, a
damper Ns/m, and an inerter kg (Fig. 16).
The optimal suspension proposed in [2] for this value of is in
fact a damper in parallel with an inerter with optimal values in
the ranges

Ns/m Ns/m kg kg

The suspension obtained by the LMI optimization is within the
above range. Moreover the LMI algorithm managed to find a
second-order suspension that achieves the theoretical minimum
at the top range of , which could not be achieved with the
fixed-order admittances considered in [2]. The resulting admit-
tance was given by

(46)

which gave a rather complicated network when using the
Bott–Duffin realization method [16]. The existence of a simpler
realization is currently being investigated.

VII. MULTI-OBJECTIVE OPTIMIZATION AND OTHER

GENERALIZATIONS

The practical design of vehicle suspension systems usually
involves a tradeoff between a variety of performance objectives
[2], [4]. It is possible to extend the techniques of the present
paper to include multi-objective optimization. To illustrate this,
we consider the case of the combined optimization of the mea-
sures and defined above. The approach taken here is to
minimize

(47)

for , where and are the optimal values obtained
in the single-objective optimizations. To solve this problem, a
generalized plant was formulated with the two performance out-
puts being the appropriate scalar multiples of and .
A new theorem was written down which is directly analogous
to Theorem 4.1 to give a necessary and sufficient condition for
the achievement of a certain performance level. This characteri-
zation was again in the form of an BMI which was solved using
the iterative algorithm implemented in YALMIP. This problem
was solved for a range of values in the interval (0,1) with a
fixed static stiffness kN/m. The results obtained are
shown in Fig. 17.

The LMI formulation of the positive real synthesis problem
allows the flexibility for further generalization. For example, the
issue of model uncertainty can be included. One approach is to
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Fig. 17. Multi-objective optimization of J and J .

use a multi-model formulation for a discrete set of parameter
values. Alternatively, an LFT formulation can be used for an ap-
propriate choice of uncertain real parameters (see [17, Lemma
3]). Optimization results were obtained for the latter approach
using the uncertain parameters and , but these are not in-
cluded for reasons of space.

VIII. EXPERIMENTAL TESTING OF A MECHANICAL NETWORK

INVOLVING AN INERTER

A mechanical network comprising an inerter in series with
a parallel combination of a spring and a damper was designed
and built at CUED. Experimental testing of the network was
carried out using the Schenck Hydraulic Test Rig shown in
Fig. 18. In this setup, the displacement of the hydraulic ram
can be controlled and it is possible to apply reference sinu-
soidal signals of different frequencies and amplitudes from a
MATLAB/Simulink environment that interfaces with a DSpace
processor. There also exists a load cell that measures the force
through the load specimen, thus, making possible the calcula-
tion of the load admittance.

The inerter device used in the mechanical network is of a
ball-screw type and was designed and built in the workshops of
CUED. A picture of the device, partially disassembled, is shown
in Fig. 19. The inertance of the device is achieved by the rota-
tion of the nut to which a flywheel is attached. Inertances of 50,
130, and 230 kg can be realized by using different flywheels
(according to the analysis carried out on the experimental data
[18]), while the actual mass of the device is about 1 kg. A dis-
placement sensor (LVDT) is placed across the inerter so that a
calculation of the inerter admittance is possible. A high-perfor-
mance damper, typical of racing car applications, is used in the
network with a damper rate of 4 kNs/m. The spring effect is
produced through the use of a titanium spring cantilever which
is supported by an L-shaped aluminium frame. The spring rate
was calculated as 250 kN/m. The whole load arrangement is ex-
cited at its lower end by the hydraulic ram, with the load cell
located at the fixed top end of the load specimen. The particular

Fig. 18. Mechanical network on the hydraulic test rig.

Fig. 19. Ball-screw inerter made at CUED with cover and flywheel removed.

network tested was chosen so that its admittance behaves ap-
proximately like a damper at high frequencies (see Fig. 13), and
more specifically, around the crossover frequency of the rig’s
control system. The benefit of this choice is that no adjustment
of the control system was anticipated from its normal settings
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Fig. 20. Admittance of the mechanical network calculated from experimental
testing.

used for testing dampers. It was known that other admittance
behaviors could lead to instability, but this was not experienced
in the present case.

The calculation of the admittance of both the inerter and the
whole load was achieved by applying sinusoidal excitation sig-
nals in the frequency range of 0.1–30 Hz, and recording the rel-
evant signals which are the ram displacement, the inerter dis-
placement, and the load force. At each frequency point, the gain
and phase of the admittance of the load and the inerter were
calculated using the correlation method described in [18]. The
results are presented in Fig. 20 for three cases: with no flywheel
in the inerter, with the medium flywheel, and with the large fly-
wheel.

The theoretical admittance of such a network is given by

(48)

where is the inertance, is the damper rate, and is the spring
rate. The second-order system has a natural frequency of
rad/s and a damping factor of . Furthermore, we have

and , so that the theo-
retical network behaves like a damper at high frequencies and
like an inerter at low frequencies. We see from Fig. 20 that at
high frequencies the network indeed behaves like a damper of
approximately 4-kNs/m and this is independent of the inertance
value. In all three cases, there is an intermediate frequency range
in which the experimental admittance tends toward the inerter
admittance and we get a considerable phase advance. As the
flywheel inertance increases, the observed natural frequency in-
deed becomes smaller, and lighter damping is evident. The ex-
perimental results match the theoretical model of the admittance
apart from the case when the frequency tends to zero. Interest-
ingly, the experimental results at low frequencies are inconsis-
tent with linear theory, since the phase tends to zero while the
gain shows an increase of approximately 10 dB/dec. It is ex-
pected that the low-frequency behavior is influenced by friction

in the inerter device, although, more investigation is required in
order to model these effects.

IX. CONCLUSION

The problem with synthesis of positive real controllers was
formulated using matrix inequalities. Two local optimization
methods were proposed to solve the bilinear matrix inequality
problems in the context of suspension design for a quarter-car
vehicle model. The algorithms were successful in obtaining
previously found solutions when optimizing over fixed-struc-
ture admittances. In the case of the performance measure ,
which characterizes the response of the sprung mass due to
road disturbances, the proposed algorithm found alternative
admittances that improve the performance measure consid-
erably. In the case of the performance measure , which
characterizes the tyre normal load, the network realizations
of the admittances from the optimization were shown to be
relatively simple and implementable networks. In the case of
the performance measure , which characterizes the effect of
dynamic loads on the sprung mass, the algorithm found positive
real admittances which achieved a theoretical lower bound at
high-static stiffness values, which previously had only been
achieved at lower stiffnesses. A prototype inerter was built
and tested at CUED in a mechanical network comprising one
inerter, one damper, and one spring. The measured frequency
responses gave a good match to the theoretical predictions over
the frequency range 0.5 Hz–30 Hz.
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